Research on optimization of case adaptation and enhancement of knowledge application benefits for multi-decision class cases based on FASS-NRS and SAGA-FCM

计算机科学 适应(眼睛) 隐性知识 聚类分析 模糊逻辑 知识库 数据挖掘 知识管理 模拟退火 粗集 机器学习 人工智能 光学 物理
作者
Jianhua Zhang,Liangchen Li,Fredrick Ahenkora Boamah,Dandan Wen,Jiake Li,Dandan Guo
出处
期刊:Journal of Advances in Management Research [Emerald (MCB UP)]
卷期号:21 (3): 333-353
标识
DOI:10.1108/jamr-08-2023-0210
摘要

Purpose Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of the existing research in the industry, this paper proposes a case-adaptation optimization algorithm to support the effective application of tacit knowledge resources. Design/methodology/approach The attribute simplification algorithm based on the forward search strategy in the neighborhood decision information system is implemented to realize the vertical dimensionality reduction of the case base, and the fuzzy C-mean (FCM) clustering algorithm based on the simulated annealing genetic algorithm (SAGA) is implemented to compress the case base horizontally with multiple decision classes. Then, the subspace K-nearest neighbors (KNN) algorithm is used to induce the decision rules for the set of adapted cases to complete the optimization of the adaptation model. Findings The findings suggest the rapid enrichment of data, information and tacit knowledge in the field of practice has led to low efficiency and low utilization of knowledge dissemination, and this algorithm can effectively alleviate the problems of users falling into “knowledge disorientation” in the era of the knowledge economy. Practical implications This study provides a model with case knowledge that meets users’ needs, thereby effectively improving the application of the tacit knowledge in the explicit case base and the problem-solving efficiency of knowledge users. Social implications The adaptation model can serve as a stable and efficient prediction model to make predictions for the effects of the many logistics and e-commerce enterprises' plans. Originality/value This study designs a multi-decision class case-adaptation optimization study based on forward attribute selection strategy-neighborhood rough sets (FASS-NRS) and simulated annealing genetic algorithm-fuzzy C-means (SAGA-FCM) for tacit knowledgeable exogenous cases. By effectively organizing and adjusting tacit knowledge resources, knowledge service organizations can maintain their competitive advantages. The algorithm models established in this study develop theoretical directions for a multi-decision class case-adaptation optimization study of tacit knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助学术z采纳,获得10
刚刚
科研通AI5应助归海紫翠采纳,获得30
1秒前
热情的初兰完成签到 ,获得积分10
2秒前
顺顺完成签到,获得积分10
2秒前
莫妮卡卡完成签到,获得积分10
2秒前
nbing完成签到,获得积分10
3秒前
SCI发布了新的文献求助50
3秒前
小猫多鱼完成签到,获得积分10
4秒前
4秒前
4秒前
默默尔烟发布了新的文献求助10
4秒前
4秒前
4秒前
宁静致远完成签到,获得积分10
4秒前
天天快乐应助内向秋寒采纳,获得10
7秒前
sfafasfsdf完成签到,获得积分10
7秒前
7秒前
luuuuuu发布了新的文献求助10
8秒前
lai发布了新的文献求助30
8秒前
8秒前
zrk发布了新的文献求助10
8秒前
8秒前
9秒前
ZJJ完成签到,获得积分10
9秒前
花开的声音1217完成签到,获得积分10
10秒前
古药完成签到,获得积分10
11秒前
赘婿应助烟雨行舟采纳,获得10
11秒前
seal发布了新的文献求助10
12秒前
12秒前
13秒前
不吃香菜发布了新的文献求助10
13秒前
RC_Wang应助ZJJ采纳,获得10
13秒前
Chridy发布了新的文献求助10
14秒前
14秒前
asipilin完成签到,获得积分10
14秒前
鼻揩了转去应助lixoii采纳,获得20
14秒前
15秒前
万能图书馆应助Steve采纳,获得10
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794