Research on optimization of case adaptation and enhancement of knowledge application benefits for multi-decision class cases based on FASS-NRS and SAGA-FCM

计算机科学 适应(眼睛) 隐性知识 聚类分析 模糊逻辑 知识库 数据挖掘 知识管理 模拟退火 粗集 机器学习 人工智能 物理 光学
作者
Jianhua Zhang,Liangchen Li,Fredrick Ahenkora Boamah,Dandan Wen,Jiake Li,Dandan Guo
出处
期刊:Journal of Advances in Management Research [Emerald (MCB UP)]
卷期号:21 (3): 333-353
标识
DOI:10.1108/jamr-08-2023-0210
摘要

Purpose Traditional case-adaptation methods have poor accuracy, low efficiency and limited applicability, which cannot meet the needs of knowledge users. To address the shortcomings of the existing research in the industry, this paper proposes a case-adaptation optimization algorithm to support the effective application of tacit knowledge resources. Design/methodology/approach The attribute simplification algorithm based on the forward search strategy in the neighborhood decision information system is implemented to realize the vertical dimensionality reduction of the case base, and the fuzzy C-mean (FCM) clustering algorithm based on the simulated annealing genetic algorithm (SAGA) is implemented to compress the case base horizontally with multiple decision classes. Then, the subspace K-nearest neighbors (KNN) algorithm is used to induce the decision rules for the set of adapted cases to complete the optimization of the adaptation model. Findings The findings suggest the rapid enrichment of data, information and tacit knowledge in the field of practice has led to low efficiency and low utilization of knowledge dissemination, and this algorithm can effectively alleviate the problems of users falling into “knowledge disorientation” in the era of the knowledge economy. Practical implications This study provides a model with case knowledge that meets users’ needs, thereby effectively improving the application of the tacit knowledge in the explicit case base and the problem-solving efficiency of knowledge users. Social implications The adaptation model can serve as a stable and efficient prediction model to make predictions for the effects of the many logistics and e-commerce enterprises' plans. Originality/value This study designs a multi-decision class case-adaptation optimization study based on forward attribute selection strategy-neighborhood rough sets (FASS-NRS) and simulated annealing genetic algorithm-fuzzy C-means (SAGA-FCM) for tacit knowledgeable exogenous cases. By effectively organizing and adjusting tacit knowledge resources, knowledge service organizations can maintain their competitive advantages. The algorithm models established in this study develop theoretical directions for a multi-decision class case-adaptation optimization study of tacit knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
大鑫完成签到,获得积分10
3秒前
完美世界应助小梦采纳,获得10
4秒前
樱木没有花道完成签到 ,获得积分10
4秒前
FREE完成签到,获得积分10
5秒前
Superman完成签到 ,获得积分10
5秒前
Rainbow7完成签到,获得积分10
5秒前
汉堡包应助mo采纳,获得10
5秒前
zachary完成签到,获得积分10
6秒前
成就的威完成签到,获得积分10
6秒前
大鑫发布了新的文献求助10
7秒前
7秒前
10秒前
11秒前
劲秉应助HHHao采纳,获得10
11秒前
达乐发布了新的文献求助10
11秒前
yanna完成签到,获得积分10
13秒前
Frose完成签到,获得积分10
13秒前
14秒前
nt1119完成签到 ,获得积分10
15秒前
NSJN2022发布了新的文献求助10
16秒前
高山流水发布了新的文献求助10
16秒前
达乐完成签到,获得积分10
18秒前
悦耳寒松发布了新的文献求助10
19秒前
19秒前
想去玩应助何美美采纳,获得10
20秒前
20秒前
瘦瘦不乐完成签到,获得积分20
21秒前
111完成签到,获得积分10
22秒前
劲秉应助李一来采纳,获得10
22秒前
莫休完成签到 ,获得积分10
22秒前
23秒前
海慕云发布了新的文献求助10
23秒前
24秒前
骐骥过隙完成签到 ,获得积分10
24秒前
活泼的诗桃完成签到,获得积分10
26秒前
DHL完成签到,获得积分10
27秒前
Qing完成签到,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295440
求助须知:如何正确求助?哪些是违规求助? 2931477
关于积分的说明 8452201
捐赠科研通 2604083
什么是DOI,文献DOI怎么找? 1421500
科研通“疑难数据库(出版商)”最低求助积分说明 660955
邀请新用户注册赠送积分活动 643950