Scalable Heterogeneous Scheduling Based Model Parallelism for Real-Time Inference of Large-Scale Deep Neural Networks

计算机科学 可扩展性 推论 并行计算 调度(生产过程) 人工神经网络 比例(比率) 数据并行性 平行性(语法) 人工智能 分布式计算 数据库 数学 量子力学 物理 数学优化
作者
Xiaofeng Zou,Cen Chen,Pei-Yu Lin,L. L. Zhang,Yanwu Xu,Wenjie Zhang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2962-2973
标识
DOI:10.1109/tetci.2024.3369628
摘要

Scaling up the capacity of deep neural networks (DNN) is one of the effective approaches to improve the model quality for several different DNN-based applications, making the DNN models continuously grow. To promote the execution efficiency of large and complex models, the devices are becoming increasingly heterogeneous with CPUs and domain-specific hardware accelerators. In many cases, the capacity of large-scale models is beyond the memory limit of a single accelerator. Recent work has shown that model parallelism, which aims to partition a DNN's computational graph on multiple devices, can not only address this problem while also provide significant performance improvements. In this work, we focus on optimizing model parallelism for timely inference of large-scale DNNs on heterogeneous processors. We transform the computation graphs of DNNs into directed acyclic graphs (DAGs) and propose to utilize heterogeneous scheduling methods to determine the model partition plan. Nevertheless, we have found that current efficient DAG scheduling methods have a lot of room for improvement to process large-scale DAGs and have high computation complexity. To this end, we propose a scalable DAG partition assisted scheduling method for heterogeneous processors to address these problems. Our approach takes the execution time of DNN models, high scalability, and memory constraints into consideration. We demonstrate the effectiveness of our approaches using both small- and large-scale DNN models. To the best of our knowledge, it is the first work that explores DAG scheduling and partitioning methods for model parallelism, and provides new avenues for accelerating large-scale DNN inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DAN完成签到,获得积分10
2秒前
Ava应助YTY采纳,获得10
2秒前
Lucas应助辛勤香岚采纳,获得10
2秒前
3秒前
Nitric_Oxide完成签到,获得积分10
3秒前
4秒前
Hello应助1111采纳,获得10
4秒前
一条蛆发布了新的文献求助10
6秒前
野原向日葵完成签到,获得积分10
9秒前
10秒前
12秒前
蛋炒饭香喷喷儿完成签到,获得积分10
14秒前
Andy完成签到,获得积分10
16秒前
zhaogl完成签到,获得积分10
18秒前
20秒前
21秒前
希望天下0贩的0应助哲999采纳,获得10
21秒前
土豪的幻珊完成签到,获得积分10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
修仙应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
修仙应助科研通管家采纳,获得10
23秒前
23秒前
李健的小迷弟应助阿紫采纳,获得10
24秒前
科研通AI2S应助落寞的无施采纳,获得10
24秒前
nowfitness完成签到,获得积分10
25秒前
木槿发布了新的文献求助10
26秒前
英俊的铭应助123成果采纳,获得10
26秒前
29秒前
小点点完成签到,获得积分10
32秒前
32秒前
34秒前
小点点发布了新的文献求助10
34秒前
HHHH完成签到,获得积分10
35秒前
平淡夏云发布了新的文献求助10
37秒前
42秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919