亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scalable Heterogeneous Scheduling Based Model Parallelism for Real-Time Inference of Large-Scale Deep Neural Networks

计算机科学 可扩展性 推论 并行计算 调度(生产过程) 人工神经网络 比例(比率) 数据并行性 平行性(语法) 人工智能 分布式计算 数据库 数学 数学优化 物理 量子力学
作者
Xiaofeng Zou,Cen Chen,Pei-Yu Lin,L. L. Zhang,Yanwu Xu,Wenjie Zhang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2962-2973
标识
DOI:10.1109/tetci.2024.3369628
摘要

Scaling up the capacity of deep neural networks (DNN) is one of the effective approaches to improve the model quality for several different DNN-based applications, making the DNN models continuously grow. To promote the execution efficiency of large and complex models, the devices are becoming increasingly heterogeneous with CPUs and domain-specific hardware accelerators. In many cases, the capacity of large-scale models is beyond the memory limit of a single accelerator. Recent work has shown that model parallelism, which aims to partition a DNN's computational graph on multiple devices, can not only address this problem while also provide significant performance improvements. In this work, we focus on optimizing model parallelism for timely inference of large-scale DNNs on heterogeneous processors. We transform the computation graphs of DNNs into directed acyclic graphs (DAGs) and propose to utilize heterogeneous scheduling methods to determine the model partition plan. Nevertheless, we have found that current efficient DAG scheduling methods have a lot of room for improvement to process large-scale DAGs and have high computation complexity. To this end, we propose a scalable DAG partition assisted scheduling method for heterogeneous processors to address these problems. Our approach takes the execution time of DNN models, high scalability, and memory constraints into consideration. We demonstrate the effectiveness of our approaches using both small- and large-scale DNN models. To the best of our knowledge, it is the first work that explores DAG scheduling and partitioning methods for model parallelism, and provides new avenues for accelerating large-scale DNN inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助tt采纳,获得10
9秒前
闹一闹吧费曼先生完成签到 ,获得积分10
10秒前
背水完成签到 ,获得积分10
11秒前
wangsy完成签到,获得积分10
12秒前
小二郎应助小蜗采纳,获得10
14秒前
科研通AI5应助琳666采纳,获得10
16秒前
23秒前
27秒前
CipherSage应助dota1dota26采纳,获得10
27秒前
小芭乐完成签到 ,获得积分10
28秒前
是多少应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
是多少应助科研通管家采纳,获得10
30秒前
深情安青应助clement采纳,获得30
35秒前
35秒前
gang发布了新的文献求助10
39秒前
NexusExplorer应助kk采纳,获得10
55秒前
1分钟前
1分钟前
yao学渣完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
kk发布了新的文献求助10
1分钟前
dota1dota26发布了新的文献求助10
1分钟前
琳666发布了新的文献求助10
1分钟前
dota1dota26完成签到,获得积分10
1分钟前
科研通AI5应助琳666采纳,获得10
1分钟前
赘婿应助gang采纳,获得10
1分钟前
教生物的杨教授完成签到,获得积分10
1分钟前
1分钟前
仲夏夜之梦完成签到,获得积分10
1分钟前
kk完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
DeenMayo发布了新的文献求助10
2分钟前
fanhuaxuejin完成签到 ,获得积分10
2分钟前
llm完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5042503
求助须知:如何正确求助?哪些是违规求助? 4273011
关于积分的说明 13321887
捐赠科研通 4085810
什么是DOI,文献DOI怎么找? 2235364
邀请新用户注册赠送积分活动 1242917
关于科研通互助平台的介绍 1169941