Joint constraints of guided filtering based confidence and nonlocal sparse tensor for color polarization super-resolution imaging

光学 人工智能 极化(电化学) 物理 彩色滤光片阵列 迭代重建 图像分辨率 计算机科学 计算机视觉 电极 量子力学 薄膜晶体管 彩色凝胶 物理化学 化学
作者
Feng Huang,Yating Chen,Xuesong Wang,Shu Wang,Xianyu Wu
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (2): 2364-2364 被引量:1
标识
DOI:10.1364/oe.507960
摘要

This paper introduces a camera-array-based super-resolution color polarization imaging system designed to simultaneously capture color and polarization information of a scene in a single shot. Existing snapshot color polarization imaging has a complex structure and limited generalizability, which are overcome by the proposed system. In addition, a novel reconstruction algorithm is designed to exploit the complementarity and correlation between the twelve channels in acquired color polarization images for simultaneous super-resolution (SR) imaging and denoising. We propose a confidence-guided SR reconstruction algorithm based on guided filtering to enhance the constraint capability of the observed data. Additionally, by introducing adaptive parameters, we effectively balance the data fidelity constraint and the regularization constraint of nonlocal sparse tensor. Simulations were conducted to compare the proposed system with a color polarization camera. The results show that color polarization images generated by the proposed system and algorithm outperform those obtained from the color polarization camera and the state-of-the-art color polarization demosaicking algorithms. Moreover, the proposed algorithm also outperforms state-of-the-art SR algorithms based on deep learning. To evaluate the applicability of the proposed imaging system and reconstruction algorithm in practice, a prototype was constructed for color polarization image acquisition. Compared with conventional acquisition, the proposed solution demonstrates a significant improvement in the reconstructed color polarization images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助zdy采纳,获得10
1秒前
乐乐应助杜再慧采纳,获得10
1秒前
Liar发布了新的文献求助10
2秒前
zhuhan发布了新的文献求助10
2秒前
贤惠的正豪完成签到,获得积分10
4秒前
z3Q应助net80yhm采纳,获得10
5秒前
7秒前
7秒前
8秒前
9秒前
我刚上小学完成签到,获得积分10
9秒前
9秒前
10秒前
ding应助莫小烦采纳,获得10
12秒前
kk完成签到,获得积分10
12秒前
喵喵发布了新的文献求助10
12秒前
深夜看文献的小刘完成签到,获得积分10
13秒前
坚定龙猫发布了新的文献求助30
13秒前
zdy发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助violet_119采纳,获得30
14秒前
跳跃仙人掌应助陶醉觅夏采纳,获得100
14秒前
善学以致用应助Huasen Lu采纳,获得10
15秒前
tramp发布了新的文献求助10
16秒前
研友_VZG7GZ应助皮灵犀采纳,获得10
17秒前
18秒前
vvvvvvv完成签到 ,获得积分10
18秒前
18秒前
hkh发布了新的文献求助10
18秒前
z3Q应助zrw采纳,获得10
19秒前
江瀛完成签到,获得积分10
20秒前
22秒前
Akim应助结实妙菡采纳,获得10
22秒前
别具一格完成签到 ,获得积分10
22秒前
24秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
第四次气候变化国家评估报告 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306069
求助须知:如何正确求助?哪些是违规求助? 2939895
关于积分的说明 8494878
捐赠科研通 2614117
什么是DOI,文献DOI怎么找? 1427967
科研通“疑难数据库(出版商)”最低求助积分说明 663219
邀请新用户注册赠送积分活动 648037