Joint constraints of guided filtering based confidence and nonlocal sparse tensor for color polarization super-resolution imaging

光学 人工智能 极化(电化学) 物理 彩色滤光片阵列 迭代重建 图像分辨率 计算机科学 计算机视觉 彩色凝胶 化学 物理化学 电极 量子力学 薄膜晶体管
作者
Feng Huang,Yating Chen,Xuesong Wang,Shu Wang,Xianyu Wu
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (2): 2364-2364 被引量:1
标识
DOI:10.1364/oe.507960
摘要

This paper introduces a camera-array-based super-resolution color polarization imaging system designed to simultaneously capture color and polarization information of a scene in a single shot. Existing snapshot color polarization imaging has a complex structure and limited generalizability, which are overcome by the proposed system. In addition, a novel reconstruction algorithm is designed to exploit the complementarity and correlation between the twelve channels in acquired color polarization images for simultaneous super-resolution (SR) imaging and denoising. We propose a confidence-guided SR reconstruction algorithm based on guided filtering to enhance the constraint capability of the observed data. Additionally, by introducing adaptive parameters, we effectively balance the data fidelity constraint and the regularization constraint of nonlocal sparse tensor. Simulations were conducted to compare the proposed system with a color polarization camera. The results show that color polarization images generated by the proposed system and algorithm outperform those obtained from the color polarization camera and the state-of-the-art color polarization demosaicking algorithms. Moreover, the proposed algorithm also outperforms state-of-the-art SR algorithms based on deep learning. To evaluate the applicability of the proposed imaging system and reconstruction algorithm in practice, a prototype was constructed for color polarization image acquisition. Compared with conventional acquisition, the proposed solution demonstrates a significant improvement in the reconstructed color polarization images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
enoot完成签到,获得积分10
刚刚
dalin完成签到,获得积分10
刚刚
YE发布了新的文献求助10
刚刚
buno应助外向的沅采纳,获得10
刚刚
体贴啤酒发布了新的文献求助10
1秒前
花痴的谷雪完成签到,获得积分10
1秒前
1秒前
圈圈发布了新的文献求助10
1秒前
亮亮完成签到,获得积分10
1秒前
没有稗子完成签到 ,获得积分10
1秒前
科研小民工应助明亮的斩采纳,获得30
1秒前
2秒前
2秒前
小可发布了新的文献求助10
2秒前
莽哥完成签到,获得积分10
2秒前
小邢一定行完成签到,获得积分10
2秒前
2秒前
叶飞荷发布了新的文献求助10
2秒前
明月清风完成签到,获得积分10
2秒前
Ymj发布了新的文献求助10
2秒前
2秒前
诗谙发布了新的文献求助10
3秒前
屁王发布了新的文献求助10
3秒前
Eric完成签到,获得积分10
3秒前
3秒前
柒柒完成签到,获得积分20
3秒前
超甜大西瓜完成签到,获得积分10
4秒前
4秒前
Evelyn发布了新的文献求助10
5秒前
168521kf发布了新的文献求助10
5秒前
传奇3应助wwwww采纳,获得10
5秒前
6秒前
英姑应助袁访天采纳,获得10
6秒前
6秒前
WS发布了新的文献求助10
6秒前
6秒前
咿咿呀呀发布了新的文献求助10
6秒前
喻辰星完成签到,获得积分10
7秒前
许女士完成签到,获得积分10
7秒前
xinxin完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740