Machine learning-based computation offloading in multi-access edge computing: A survey

计算机科学 计算卸载 边缘计算 计算 移动边缘计算 GSM演进的增强数据速率 建筑 移动设备 人工智能 分布式计算 万维网 算法 艺术 视觉艺术
作者
Alok Choudhury,Manojit Ghose,Akhirul Islam,Yogita Thakran
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:148: 103090-103090 被引量:10
标识
DOI:10.1016/j.sysarc.2024.103090
摘要

The advancement of technology towards the realization of the evolving mobile computing paradigm brings a rapid paradigm shift in its usage, especially in the Internet, computation, and communications, that has a profound impact on businesses, services, and users. With the rise in resource-intensive or edge-based mobile applications such as autonomous driving, Amazon Go, virtual and augmented reality, and healthcare-related applications, countless challenges in computation and communication parameters like latency, bandwidth, and energy consumption are evolving. As a result, the multi-access edge computing (MEC) paradigm receives enormous attention where some portions of the user applications are offloaded to powerful machines for their efficient execution to optimize different evaluation metrics or to achieve performance goals. While a few survey works are available in this direction, none of them focuses explicitly on the emerging machine learning (ML) based computation offloading techniques and various associated sub-problems together. This paper aims to provide a detailed but precise overview of the research on using ML techniques for MEC environments. In this survey, we focus on how authors and researchers utilize the ML models in computation offloading problems on MEC architecture. We extend our study by considering several edge architectures, offloading parameters, ML approaches, and problem formulation strategies concerning computation offloading. Additionally, this paper discusses the potential challenges in the direction of computation offloading on MEC architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风和日丽发布了新的文献求助10
刚刚
所所应助堃堃堃采纳,获得10
1秒前
1秒前
2秒前
cctv18应助汛钥采纳,获得10
2秒前
Marcus发布了新的文献求助10
3秒前
3秒前
一十六发布了新的文献求助80
3秒前
4秒前
阿嚏完成签到,获得积分10
4秒前
4秒前
4秒前
俭朴咖啡发布了新的文献求助10
6秒前
WASAS发布了新的文献求助10
6秒前
虎咪咪发布了新的文献求助10
6秒前
jm完成签到,获得积分10
7秒前
影像大侠发布了新的文献求助10
7秒前
一切随风完成签到,获得积分10
8秒前
Vixerunt完成签到,获得积分20
9秒前
huihui完成签到,获得积分20
10秒前
陈住气发布了新的文献求助10
10秒前
tansl1989发布了新的文献求助10
10秒前
明理萃发布了新的文献求助20
10秒前
能量球发布了新的文献求助10
10秒前
11秒前
鳗鱼盼夏完成签到,获得积分10
11秒前
深情安青应助她很可疑啊采纳,获得10
11秒前
拼搏的大米完成签到,获得积分10
12秒前
12秒前
酷波er应助FaFa采纳,获得10
13秒前
13秒前
13秒前
14秒前
胡琰彦发布了新的文献求助10
14秒前
14秒前
WASAS完成签到,获得积分10
14秒前
ssssbbbb完成签到,获得积分10
14秒前
15秒前
15秒前
lulu发布了新的文献求助10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248068
求助须知:如何正确求助?哪些是违规求助? 2891382
关于积分的说明 8267323
捐赠科研通 2559520
什么是DOI,文献DOI怎么找? 1388337
科研通“疑难数据库(出版商)”最低求助积分说明 650718
邀请新用户注册赠送积分活动 627671