Purpose: Recently, apoptosis-related genes were shown to modulate cancer immunity. However, the role of apoptosis-related genes in the glioma immune microenvironment (GIME) remains unknown. This study aimed to explore the prognostic value of apoptosis-related genes in glioma. Methods: Doxorubicin was used to induce glioma cell apoptosis, and four differentially expressed apoptosis-related genes were identified: CREM, TNFSF12, PEA15, and PRKCD. Kaplan-Meier analyses, receiver operating characteristic curve analyses, and nomograms were established to determine the relationship between risk markers and the prognosis of patients with glioma. Results: Risk biomarkers were significantly associated with overall survival, immune cell infiltration, and immune checkpoints in patients with glioma. Somatic mutations and anti-PD-1/L1 immunotherapy were associated with worse prognosis in the high-risk group receiving anti-PD-1/L1 therapy. The expression of these four apoptosis-related genes was verified using quantitative polymerase chain reaction and immunohistochemistry, and the relationship between these four genes and apoptosis was examined using flow cytometry. Conclusions: This study suggests that apoptosis-related genes play a critical role in shaping the GIME. Assessing the apoptotic patterns of individual tumors will enhance our understanding of GIME infiltration features and lead to improved strategies for immunotherapy.