Modeling and experimental validation of a proposed distance protection system for MVDC transmission lines

电力传输 断层(地质) 直流电 输电线路 MATLAB语言 传输(电信) 电子工程 电压 过程(计算) 工程类 计算机科学 自适应神经模糊推理系统 噪音(视频) 小波 电气工程 人工智能 模糊逻辑 模糊控制系统 地震学 图像(数学) 地质学 操作系统
作者
Dina Mourad,Mohamed S. Abdelfattah,Safaa Abdelfattah,A. S. Abd-Elatif
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:229: 110070-110070
标识
DOI:10.1016/j.epsr.2023.110070
摘要

Protecting direct current transmission lines (DC-TLs) against faults is challenging and crucial, especially when locating faults. This research aims to develop a novel distance protection approach for Medium voltage direct current transmission lines (MVDC-TLs). Various faults in the computerized experiments and practical models have been applied to the proposed system in the AC network and DC transmission lines to evaluate the performance of the proposed method. The proposed protection system employs the wavelet transforms (WT) and ANFIS as detailed coefficients ‘feature extracting’ tools and classifiers, respectively. The mechanism operation of the proposed method is composed of three stages. Firstly, it extracts the features of the faults by WT. Hence, the ANFIS training process uses such features to identify and classify the faults. The third stage utilizes the ratio value between the fault current and the healthy operation current as an input of another ANFIS model to locate faults on the DC TL. The performance of the proposed protection method has been tested and evaluated for MVDC and MVAC networks. Also, the research executes both practical and simulation experiments utilizing different faults. It examines various fault locations on the entire MVDC line. The mechanism measures the current signals on both sides of the DC-TL. The paper built the MVDC-TLs model and the different cases using the software PSCAD/EMTDC and the proposed method via MATLAB. The study tested faults along the TL in the presence of the AWGN noise. The research utilizes practical experiments to verify the accuracy of the proposer. The accuracy of the proposed fault location is 99.923 %. Based on the results of this research paper and comparison with the recent related research works, the proposed method is more effective and efficient than the previous methods in detecting, classifying, and locating system faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助不安豁采纳,获得10
1秒前
huifang发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
67发布了新的文献求助10
2秒前
代萌萌完成签到,获得积分10
2秒前
啊哈哈哈发布了新的文献求助10
3秒前
3秒前
四喜格格完成签到,获得积分10
4秒前
科研通AI5应助Laus采纳,获得10
4秒前
Godspeed发布了新的文献求助10
5秒前
悦耳的乐松完成签到,获得积分10
6秒前
星星泡饭发布了新的文献求助10
6秒前
着急的语儿完成签到,获得积分10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得30
6秒前
差劲先森完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科目三应助goodgoodstudy采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Wu发布了新的文献求助10
7秒前
7秒前
lemon应助科研通管家采纳,获得20
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
打打应助聪聪great采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
8秒前
无名完成签到,获得积分10
8秒前
打打应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得40
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
只A不B应助科研通管家采纳,获得30
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762