Environmental DNA and remote sensing datasets reveal the spatial distribution of aquatic insects in a disturbed subtropical river system

物种丰富度 生物多样性 亚热带 空间分布 环境科学 环境DNA 生态学 空间生态学 植被(病理学) 流域 遥感 自然地理学 地理 地图学 生物 病理 医学
作者
Zongyang Wang,Feilong Li,Feifei Wu,Fen Guo,Wei Gao,Yuan Zhang,Zhifeng Yang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:351: 119972-119972 被引量:1
标识
DOI:10.1016/j.jenvman.2023.119972
摘要

Biodiversity datasets with high spatial resolution are critical prerequisites for river protection and management decision-making. However, traditional morphological biomonitoring is inefficient and only provides several site estimates, and there is an urgent need for new approaches to predict biodiversity on fine spatial scales throughout the entire river systems. Here, we combined the environmental DNA (eDNA) and remote sensing (RS) technologies to develop a novel approach for predicting the spatial distribution of aquatic insects with high spatial resolution in a disturbed subtropical Dongjiang River system of southeast China. First, we screened thirteen RS-based vegetation indices that significantly correlated with the eDNA-inferred richness of aquatic insects. In particular, the green normalized difference vegetation index (GNDVI) and normalized difference red-edge2 (NDRE2) were closely related to eDNA-inferred richness. Second, using the gradient boosting decision tree, our data showed that the spatial pattern of eDNA-inferred richness could achieve a high spatial resolution to 500 m reach and accurate prediction of more than 80%, and the prediction efficiency of the headwater streams (Strahler stream order = 1) was slightly higher than the downstream (Strahler stream order >1). Third, using the random forest algorithm, the spatial distribution of aquatic insects could reach a prediction rate of over 70% for the presence or absence of specific genera. Overall, this study provides a new approach to achieving high spatial resolution prediction of the distribution of aquatic insects, which supports decision-making on river diversity protection under climate changes and human impacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助..采纳,获得10
1秒前
4秒前
6秒前
7秒前
万海完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
英俊的铭应助奥特曼采纳,获得10
8秒前
刘夫人发布了新的文献求助10
9秒前
10秒前
jiajia发布了新的文献求助10
10秒前
南栀发布了新的文献求助10
11秒前
咖啡蓝图完成签到,获得积分10
11秒前
YOLK97发布了新的文献求助10
11秒前
Akim应助YY采纳,获得10
12秒前
12秒前
12秒前
Deduta发布了新的文献求助10
14秒前
14秒前
15秒前
科研通AI5应助辉hui采纳,获得10
16秒前
wangbw完成签到,获得积分10
16秒前
16秒前
16秒前
安全123完成签到,获得积分20
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
刘蕾完成签到,获得积分10
18秒前
陈民发布了新的文献求助10
19秒前
ZCQ完成签到,获得积分10
19秒前
英俊的铭应助小薛采纳,获得10
19秒前
AAA完成签到,获得积分10
19秒前
..发布了新的文献求助10
20秒前
Orange应助刘夫人采纳,获得10
20秒前
21秒前
unqiue发布了新的文献求助10
21秒前
安全123发布了新的文献求助30
22秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153