Theoretical study on the synthesis of urea by series electrocatalysis of lithium main group embedded in COF structure

催化作用 化学 尿素 电催化剂 电化学 无机化学 离解(化学) 过渡金属 电极 有机化学 物理化学
作者
Yingjun Hou,Ling Guo
出处
期刊:Journal of Solid State Chemistry [Elsevier BV]
卷期号:332: 124539-124539
标识
DOI:10.1016/j.jssc.2023.124539
摘要

Replacement of the Harber-Bosch process for urea production by electrochemical reduction is an attractive alternative that reduces chemical energy consumption, reduces environmental pollution and improves efficiency. Among them, the method of electrochemical coupling of N2 and CO2 to produce urea has been widely used, but the inertness of nitrogen and nitrogen bond and high dissociation energy make it difficult to activate N2. Meanwhile, the method of synthesis of urea by NO3RR came into being. Nitrate in sewage is more abundant and convenient than nitrogen raw material, and more importantly, the dissociation energy of NO bond is much lower than that of N N. In this study, the transition metal embedded lithium COF catalyst was taken as an example, and the optimal electrocatalyst was selected through screening and synthesis energy barrier comparison to study the mechanism of urea synthesis. We studied the NRR and NO3RR paths, respectively, and found that the NRR synthesis of urea was optimal on the LiTaS-Pc VPPs catalyst, with a limiting potential value of −0.57V, and the NO3RR synthesis of urea was optimal on the LiVS-Pc VPPs catalyst, with a limiting potential value of −0.39V. It is found that NO3RR on the lithium catalyst is relatively better, and the required limit potential value is lower. In addition, the advantage of choosing lithium metal doping as catalyst in our study is that HER can be well inhibited, and the desorption of urea is easier than that of transition metal doping (taking molybdenum as an example). This study points out the direction for the electrocatalytic synthesis mechanism of urea, and provides a new idea for the selection of catalysts, paving the way for the future production of urea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吉田清子发布了新的文献求助10
刚刚
刚刚
田振扬完成签到,获得积分10
1秒前
jsh完成签到,获得积分10
1秒前
甜甜亦丝完成签到,获得积分10
1秒前
欧清完成签到,获得积分10
1秒前
parpate发布了新的文献求助10
2秒前
Owen应助林途采纳,获得10
4秒前
4秒前
renren发布了新的文献求助10
4秒前
关晚竹完成签到,获得积分20
5秒前
科研通AI5应助HughWang采纳,获得30
5秒前
6秒前
6秒前
9秒前
CipherSage应助关晚竹采纳,获得10
12秒前
12秒前
今天想要吃饭完成签到,获得积分10
13秒前
柊苒发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
AskNature完成签到,获得积分10
15秒前
孙颢然完成签到 ,获得积分10
16秒前
16秒前
陶醉雪青应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
Tourist应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
lilili应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
wxyshare应助科研通管家采纳,获得10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971