催化作用
化学
尿素
电催化剂
电化学
无机化学
离解(化学)
过渡金属
电极
有机化学
物理化学
标识
DOI:10.1016/j.jssc.2023.124539
摘要
Replacement of the Harber-Bosch process for urea production by electrochemical reduction is an attractive alternative that reduces chemical energy consumption, reduces environmental pollution and improves efficiency. Among them, the method of electrochemical coupling of N2 and CO2 to produce urea has been widely used, but the inertness of nitrogen and nitrogen bond and high dissociation energy make it difficult to activate N2. Meanwhile, the method of synthesis of urea by NO3RR came into being. Nitrate in sewage is more abundant and convenient than nitrogen raw material, and more importantly, the dissociation energy of NO bond is much lower than that of N N. In this study, the transition metal embedded lithium COF catalyst was taken as an example, and the optimal electrocatalyst was selected through screening and synthesis energy barrier comparison to study the mechanism of urea synthesis. We studied the NRR and NO3RR paths, respectively, and found that the NRR synthesis of urea was optimal on the LiTaS-Pc VPPs catalyst, with a limiting potential value of −0.57V, and the NO3RR synthesis of urea was optimal on the LiVS-Pc VPPs catalyst, with a limiting potential value of −0.39V. It is found that NO3RR on the lithium catalyst is relatively better, and the required limit potential value is lower. In addition, the advantage of choosing lithium metal doping as catalyst in our study is that HER can be well inhibited, and the desorption of urea is easier than that of transition metal doping (taking molybdenum as an example). This study points out the direction for the electrocatalytic synthesis mechanism of urea, and provides a new idea for the selection of catalysts, paving the way for the future production of urea.
科研通智能强力驱动
Strongly Powered by AbleSci AI