Advanced heterostructure of Pd nanosheets@Pt nanoparticles boosts methanol electrooxidation

异质结 纳米材料基催化剂 材料科学 动力学 纳米颗粒 催化作用 甲醇 密度泛函理论 化学工程 纳米技术 金属间化合物 化学 光电子学 计算化学 冶金 生物化学 物理 有机化学 合金 量子力学 工程类
作者
Jie Li,Cheng Wang,Yuefan Zhang,Shinichi Hata,Kewang Zhang,Changqing Ye,Yukihide Shiraishi,Yukou Du
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:85: 430-438 被引量:36
标识
DOI:10.1016/j.jechem.2023.06.031
摘要

Heterostructures have emerged as elaborate structures to improve catalytic activity owing to their combined surface and distinct inverse interface. However, fabricating advanced nanocatalysts with facet-dependent interface remains an unexploited and promising area. Herein, we render the controlled growth of Pt nanoparticles (NPs) on Pd nanosheets (NSs) by regulating the reduction kinetics of Pt2+ with solvents. Specifically, the fast reduction kinetic makes the Pt NPs uniformly deposited on the Pd NSs (U-Pd@Pt HS), while the slow reduction kinetic leads to the preferential growth of Pt NPs on the edge of the Pd NSs (E-Pd@Pt HS). Density functional theory calculations demonstrate that Pd (111)-Pt interface in U-Pd@Pt HS induces the electron-deficient status of Pd substrates, triggering the d-band center downshift and amplifying the Pd-Pt intermetallic interaction. The synergy between the electronic effect and interfacial effect facilitates the removal of poisonous intermediates on U-Pd@Pt HS. By virtue of the Pd NSs@Pt NPs interface, the heterostructure achieves exceptional methanol oxidation reaction activity as well as improved durability. This study innovatively proposes heterostructure engineering with facet-dependent interfacial modulation, offering instructive guidelines for the rational design of versatile heterocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助三九采纳,获得10
刚刚
1秒前
1秒前
GEeZiii发布了新的文献求助10
1秒前
1秒前
7777777发布了新的文献求助10
1秒前
研友_nv2r4n发布了新的文献求助10
1秒前
Bman完成签到,获得积分10
2秒前
sakurai应助愤怒的寄琴采纳,获得10
2秒前
迟大猫应助简单的银耳汤采纳,获得10
2秒前
Owen应助LJL采纳,获得10
2秒前
3秒前
cwn完成签到,获得积分10
3秒前
zhuzhu完成签到,获得积分0
3秒前
丘比特应助彩色的蓝天采纳,获得10
3秒前
ChoccyPasta完成签到,获得积分10
4秒前
4秒前
感动的冬云完成签到,获得积分10
4秒前
嘤嘤嘤发布了新的文献求助10
5秒前
wuhaixia完成签到,获得积分10
5秒前
正版DY完成签到,获得积分10
5秒前
333发布了新的文献求助10
5秒前
醒醒发布了新的文献求助10
5秒前
xfxx发布了新的文献求助10
6秒前
Sissi完成签到 ,获得积分10
6秒前
校长完成签到,获得积分20
6秒前
尼亚吉拉完成签到,获得积分10
6秒前
6秒前
布布发布了新的文献求助10
6秒前
Zhang发布了新的文献求助10
7秒前
qinqin发布了新的文献求助10
8秒前
顾夏包发布了新的文献求助30
8秒前
钰宁发布了新的文献求助10
8秒前
NexusExplorer应助ZZZ采纳,获得10
9秒前
10秒前
顺心书琴完成签到,获得积分10
10秒前
习习应助Nifeng采纳,获得10
10秒前
mrmrer发布了新的文献求助10
10秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794