Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys

随机森林 计算机科学 特征选择 熵(时间箭头) 机器学习 人工智能 算法 热力学 物理
作者
Yifan Zhang,Wei Ren,Weili Wang,Shujian Ding,Nan Li,Liang Chang,Qian Zhou
出处
期刊:Chinese Physics [Science Press]
卷期号:72 (18): 180701-180701 被引量:4
标识
DOI:10.7498/aps.72.20230646
摘要

Traditional material calculation methods, such as first principles and thermodynamic simulations, have accelerated the discovery of new materials. However, these methods are difficult to construct models flexibly according to various target properties. And they will consume many computational resources and the accuracy of their predictions is not so high. In the last decade, data-driven machine learning techniques have gradually been applied to materials science, which has accumulated a large quantity of theoretical and experimental data. Machine learning is able to dig out the hidden information from these data and help to predict the properties of materials. The data in this work are obtained from the published references. And several performance-oriented algorithms are selected to build a prediction model for the hardness of high entropy alloys. A high entropy alloy hardness dataset containing 19 candidate features is trained, tested, and evaluated by using an ensemble learning algorithm: a genetic algorithm is selected to filter the 19 candidate features to obtain an optimized feature set of 8 features; a two-stage feature selection approach is then combined with a traditional solid solution strengthening theory to optimize the features, three most representative feature parameters are chosen and then used to build a random forest model for hardness prediction. The prediction accuracy achieves an <i>R</i><sup>2</sup> value of 0.9416 by using the 10-fold cross-validation method. To better understand the prediction mechanism, solid solution strengthening theory of the alloy is used to explain the hardness difference. Further, the atomic size, electronegativity and modulus mismatch features are found to have very important effects on the solid solution strengthening of high entropy alloys when genetic algorithms are used for implementing the feature selection. The machine learning algorithm and features are further used for predicting solid solution strengthening properties, resulting in an <i>R</i><sup>2</sup> of 0.8811 by using the 10-fold cross-validation method. These screened-out parameters have good transferability for various high entropy alloy systems. In view of the poor interpretability of the random forest algorithm, the SHAP interpretable machine learning method is used to dig out the internal reasoning logic of established machine learning model and clarify the mechanism of the influence of each feature on hardness. Especially, the valence electron concentration is found to have the most significant weakening effect on the hardness of high entropy alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tjzhaoll发布了新的文献求助10
2秒前
雨声完成签到,获得积分10
3秒前
4秒前
奋斗含巧发布了新的文献求助10
4秒前
6w6完成签到,获得积分10
6秒前
7秒前
在水一方应助zzz采纳,获得10
7秒前
8秒前
123完成签到,获得积分10
8秒前
酷波er应助fcyyc采纳,获得10
8秒前
9秒前
zz发布了新的文献求助10
9秒前
Eastonlyzhang发布了新的文献求助10
10秒前
芜湖完成签到,获得积分10
10秒前
行路1完成签到 ,获得积分10
10秒前
充电宝应助tjzhaoll采纳,获得10
10秒前
瓦罐发布了新的文献求助30
11秒前
yznfly应助奋斗含巧采纳,获得30
11秒前
喵米其林之星完成签到,获得积分10
11秒前
227完成签到,获得积分10
12秒前
bkagyin应助zwhy采纳,获得10
12秒前
14秒前
每天都在掉头发完成签到,获得积分10
14秒前
馒头发布了新的文献求助10
14秒前
14秒前
唐焱杰发布了新的文献求助10
14秒前
玛琪玛小姐的狗完成签到,获得积分10
14秒前
16秒前
yolo完成签到,获得积分10
17秒前
guochang发布了新的文献求助10
17秒前
Abby完成签到,获得积分10
17秒前
Lily发布了新的文献求助10
19秒前
20秒前
刘书章发布了新的文献求助10
20秒前
zyc发布了新的文献求助10
20秒前
wsx4321完成签到,获得积分10
21秒前
眯眯眼的访冬完成签到 ,获得积分10
21秒前
彭于晏应助等待冰之采纳,获得20
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303