Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys

随机森林 计算机科学 特征选择 熵(时间箭头) 机器学习 人工智能 算法 热力学 物理
作者
Yifan Zhang,Wei Ren,Weili Wang,Shujian Ding,Nan Li,Liang Chang,Qian Zhou
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:72 (18): 180701-180701 被引量:4
标识
DOI:10.7498/aps.72.20230646
摘要

Traditional material calculation methods, such as first principles and thermodynamic simulations, have accelerated the discovery of new materials. However, these methods are difficult to construct models flexibly according to various target properties. And they will consume many computational resources and the accuracy of their predictions is not so high. In the last decade, data-driven machine learning techniques have gradually been applied to materials science, which has accumulated a large quantity of theoretical and experimental data. Machine learning is able to dig out the hidden information from these data and help to predict the properties of materials. The data in this work are obtained from the published references. And several performance-oriented algorithms are selected to build a prediction model for the hardness of high entropy alloys. A high entropy alloy hardness dataset containing 19 candidate features is trained, tested, and evaluated by using an ensemble learning algorithm: a genetic algorithm is selected to filter the 19 candidate features to obtain an optimized feature set of 8 features; a two-stage feature selection approach is then combined with a traditional solid solution strengthening theory to optimize the features, three most representative feature parameters are chosen and then used to build a random forest model for hardness prediction. The prediction accuracy achieves an <i>R</i><sup>2</sup> value of 0.9416 by using the 10-fold cross-validation method. To better understand the prediction mechanism, solid solution strengthening theory of the alloy is used to explain the hardness difference. Further, the atomic size, electronegativity and modulus mismatch features are found to have very important effects on the solid solution strengthening of high entropy alloys when genetic algorithms are used for implementing the feature selection. The machine learning algorithm and features are further used for predicting solid solution strengthening properties, resulting in an <i>R</i><sup>2</sup> of 0.8811 by using the 10-fold cross-validation method. These screened-out parameters have good transferability for various high entropy alloy systems. In view of the poor interpretability of the random forest algorithm, the SHAP interpretable machine learning method is used to dig out the internal reasoning logic of established machine learning model and clarify the mechanism of the influence of each feature on hardness. Especially, the valence electron concentration is found to have the most significant weakening effect on the hardness of high entropy alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Erich发布了新的文献求助10
2秒前
Sherwin完成签到,获得积分10
3秒前
成就的大米完成签到,获得积分10
3秒前
稳重的柚子完成签到,获得积分20
4秒前
胡蝶完成签到 ,获得积分10
4秒前
深情安青应助成就傲霜采纳,获得10
4秒前
CX完成签到 ,获得积分10
5秒前
zr完成签到,获得积分10
5秒前
nove999完成签到 ,获得积分10
6秒前
6秒前
Tysonqu完成签到,获得积分10
6秒前
LSH完成签到 ,获得积分10
7秒前
7秒前
liyanglin完成签到 ,获得积分10
7秒前
9秒前
追寻夏烟完成签到 ,获得积分10
9秒前
可爱可兰完成签到 ,获得积分10
10秒前
爱听歌的语蓉完成签到 ,获得积分10
12秒前
清爽盼秋完成签到,获得积分10
12秒前
裴文广完成签到 ,获得积分10
14秒前
明理从露完成签到 ,获得积分10
15秒前
妮子要学习完成签到,获得积分10
16秒前
立冬完成签到,获得积分10
16秒前
辛勤的苡完成签到,获得积分10
16秒前
灵巧蛟凤完成签到,获得积分10
17秒前
俗人应助zs采纳,获得10
17秒前
科研通AI2S应助zs采纳,获得10
17秒前
VDC应助zs采纳,获得10
17秒前
Lucas应助zs采纳,获得10
17秒前
科研通AI2S应助zs采纳,获得10
17秒前
科研通AI2S应助zs采纳,获得10
17秒前
科研通AI2S应助zs采纳,获得10
17秒前
完美世界应助zs采纳,获得10
18秒前
杳鸢应助zs采纳,获得10
18秒前
VDC应助zs采纳,获得10
18秒前
fabulous完成签到,获得积分10
19秒前
Emily完成签到,获得积分10
19秒前
bluehand完成签到,获得积分10
20秒前
恐怖稽器人完成签到,获得积分10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229827
求助须知:如何正确求助?哪些是违规求助? 2877413
关于积分的说明 8199043
捐赠科研通 2544788
什么是DOI,文献DOI怎么找? 1374675
科研通“疑难数据库(出版商)”最低求助积分说明 647033
邀请新用户注册赠送积分活动 621851