One Model Is Enough: Toward Multiclass Weakly Supervised Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 过度拟合 像素 图像分割 公制(单位) 模式识别(心理学) 计算机视觉 遥感 人工神经网络 地理 运营管理 经济
作者
Zhenshi Li,Xueliang Zhang,Pengfeng Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:14
标识
DOI:10.1109/tgrs.2023.3290242
摘要

Semantic segmentation of remote sensing images is effective for large-scale land cover mapping, which heavily relies on a large amount of training data with laborious pixel-level labeling. Weakly supervised semantic segmentation (WSSS) based on image-level labels has attracted intensive attention due to its easy availability. However, existing image-level WSSS methods for remote sensing images mainly focus on binary segmentation, which are difficult to apply to multiclass scenarios. This study proposes a comprehensive framework for image-level multiclass WSSS of remote sensing images, consisting of appropriate image-level label generation, high-quality pixel-level pseudo mask generation, and segmentation network iterative training. Specifically, a training sample filtering method, as well as a dataset cooccurrence evaluation metric, is proposed to demonstrate proper image-level training samples. Leveraging multiclass class activation maps, an uncertainty-driven pixel-level weighted mask is proposed to relieve the overfitting of labeling noise in pseudo masks when training the segmentation network. Extensive experiments demonstrate that the proposed framework can achieve high-quality multiclass WSSS performance with image-level labels, which can attain 94.23% and 90.77% of the IoUs from pixel-level labels for the ISPRS Potsdam and Vaihingen datasets, respectively. Beyond that, for the DeepGlobe dataset with more complex landscapes, the WSSS framework can achieve an accuracy close to 99% of the fully supervised case. Additionally, we further demonstrate that compared to adopting multiple binary WSSS models, directly training a multiclass WSSS model can achieve better results, which can provide new thoughts to achieve WSSS of remote sensing images for multiclass application scenarios. Our code is public at https://github.com/NJU-LHRS/OME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KIKI发布了新的文献求助10
刚刚
1秒前
laj完成签到,获得积分10
1秒前
糊涂的尔蝶完成签到,获得积分10
2秒前
3秒前
Billy发布了新的文献求助10
4秒前
nanlinhua发布了新的文献求助10
5秒前
5秒前
6秒前
Zh1y完成签到,获得积分10
6秒前
xibei发布了新的文献求助10
8秒前
Archer发布了新的文献求助10
8秒前
茶多酚完成签到,获得积分10
9秒前
aa发布了新的文献求助30
9秒前
qianww完成签到,获得积分10
9秒前
11秒前
英姑应助彩色的亦丝采纳,获得10
11秒前
田様应助博修采纳,获得30
12秒前
华仔应助nanlinhua采纳,获得10
13秒前
16秒前
annali完成签到,获得积分10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
加菲丰丰应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
17秒前
pluto应助科研通管家采纳,获得10
17秒前
丘比特应助aa采纳,获得10
17秒前
无奈绮琴完成签到 ,获得积分10
18秒前
科目三应助栗子采纳,获得10
18秒前
尊敬柏柳完成签到 ,获得积分10
19秒前
空青发布了新的文献求助10
20秒前
木华完成签到,获得积分10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262821
求助须知:如何正确求助?哪些是违规求助? 2903441
关于积分的说明 8325296
捐赠科研通 2573448
什么是DOI,文献DOI怎么找? 1398306
科研通“疑难数据库(出版商)”最低求助积分说明 654097
邀请新用户注册赠送积分活动 632686