One Model Is Enough: Toward Multiclass Weakly Supervised Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 分割 过度拟合 像素 图像分割 公制(单位) 模式识别(心理学) 计算机视觉 遥感 人工神经网络 地理 运营管理 经济
作者
Zhenshi Li,Xueliang Zhang,Pengfeng Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:14
标识
DOI:10.1109/tgrs.2023.3290242
摘要

Semantic segmentation of remote sensing images is effective for large-scale land cover mapping, which heavily relies on a large amount of training data with laborious pixel-level labeling. Weakly supervised semantic segmentation (WSSS) based on image-level labels has attracted intensive attention due to its easy availability. However, existing image-level WSSS methods for remote sensing images mainly focus on binary segmentation, which are difficult to apply to multiclass scenarios. This study proposes a comprehensive framework for image-level multiclass WSSS of remote sensing images, consisting of appropriate image-level label generation, high-quality pixel-level pseudo mask generation, and segmentation network iterative training. Specifically, a training sample filtering method, as well as a dataset cooccurrence evaluation metric, is proposed to demonstrate proper image-level training samples. Leveraging multiclass class activation maps, an uncertainty-driven pixel-level weighted mask is proposed to relieve the overfitting of labeling noise in pseudo masks when training the segmentation network. Extensive experiments demonstrate that the proposed framework can achieve high-quality multiclass WSSS performance with image-level labels, which can attain 94.23% and 90.77% of the IoUs from pixel-level labels for the ISPRS Potsdam and Vaihingen datasets, respectively. Beyond that, for the DeepGlobe dataset with more complex landscapes, the WSSS framework can achieve an accuracy close to 99% of the fully supervised case. Additionally, we further demonstrate that compared to adopting multiple binary WSSS models, directly training a multiclass WSSS model can achieve better results, which can provide new thoughts to achieve WSSS of remote sensing images for multiclass application scenarios. Our code is public at https://github.com/NJU-LHRS/OME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小董不懂完成签到,获得积分10
1秒前
椰子完成签到,获得积分10
1秒前
沐沐溪三清完成签到,获得积分10
1秒前
2秒前
刘丰完成签到 ,获得积分10
4秒前
郑桂庆完成签到 ,获得积分10
5秒前
zhang完成签到 ,获得积分10
5秒前
yuchen完成签到,获得积分10
6秒前
喜悦的水云完成签到 ,获得积分10
6秒前
7秒前
zhaokunfeng完成签到,获得积分10
7秒前
Y123发布了新的文献求助10
7秒前
wu完成签到,获得积分10
7秒前
高高诗柳完成签到 ,获得积分10
7秒前
王金豪完成签到,获得积分10
7秒前
LSS完成签到,获得积分10
7秒前
榜一大哥的负担完成签到 ,获得积分10
8秒前
Lucas应助qi0625采纳,获得10
8秒前
顾矜应助以筱采纳,获得10
9秒前
景清完成签到,获得积分10
9秒前
细心香烟完成签到 ,获得积分10
9秒前
hu完成签到 ,获得积分10
9秒前
HQ完成签到,获得积分10
9秒前
10秒前
水清木华完成签到,获得积分10
10秒前
11秒前
miao完成签到,获得积分20
11秒前
xyp_zjut应助学术乞丐采纳,获得10
11秒前
Lucas应助凉白开采纳,获得10
11秒前
体贴凌柏发布了新的文献求助10
12秒前
12秒前
12秒前
鹿子完成签到 ,获得积分10
12秒前
秋枫忆完成签到,获得积分10
14秒前
宋立发布了新的文献求助10
14秒前
孤独的AD钙完成签到,获得积分10
14秒前
15秒前
fang应助miao采纳,获得10
16秒前
星辰与月完成签到,获得积分10
16秒前
Pt-SACs发布了新的文献求助10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029