DAGL-Faster: Domain adaptive faster r-cnn for vehicle object detection in rainy and foggy weather conditions

计算机科学 卷积神经网络 人工智能 水准点(测量) 领域(数学分析) 目标检测 恶劣天气 计算机视觉 算法 模式识别(心理学) 数学 气象学 地理 数学分析 大地测量学
作者
Mingdi Hu,Yi Wu,Yize Yang,Jiulun Fan,Bing‐Yi Jing
出处
期刊:Displays [Elsevier]
卷期号:79: 102484-102484 被引量:12
标识
DOI:10.1016/j.displa.2023.102484
摘要

Convolutional neural networks (CNNs) have made remarkable progress in detecting vehicle objects in normal weather conditions. However, the performance of these networks deteriorates when faced with rain and fog, as these conditions degrade image quality and cause blurring. The network models trained on clear images perform poorly on rainy and foggy images due to the differences in distribution between normal weather and adverse weather conditions, leading to domain bias. To address this challenge, we present a novel algorithm called DAGL-Faster (Domain Adaptive Global-Local Alignment Faster RCNN) , which enables domain-adaptive vehicle object detection specifically for rainy and foggy weather. DAGL-Faster extends the Faster RCNN framework by incorporating three domain classifiers. These classifiers aid the network in extracting features that are invariant to the domain differences between the source domain (normal weather) and the target domains (rain or fog). The algorithm tackles the domain dissimilarities from three perspectives: local image-level, global image-level, and instance-level. Additionally, it introduces consistency regularization to facilitate simultaneous alignment at the image-level and instance-level, optimizing the overall alignment effect. Through extensive experiments, we demonstrate the efficacy of DAGL-Faster on two benchmark datasets: Foggy Cityscapes and Rain Vehicle Color-24. The algorithm achieves an impressive mean average precision (mAP) of up to 36.7% on the Foggy Cityscapes dataset and 49.79% on the Rain Vehicle Color-24 dataset. Moreover, DAGL-Faster demonstrates superior computational efficiency, with a processing time of 1.9 seconds per image using a single GTX 1080 Ti GPU. These results surpass state-of-the-art algorithms for popular domain adaptive object detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DKH完成签到,获得积分20
1秒前
今后应助王柯采纳,获得10
3秒前
3秒前
ZJZALLEN完成签到 ,获得积分10
3秒前
无限大树发布了新的文献求助10
4秒前
4秒前
略略略完成签到,获得积分10
5秒前
5秒前
zxy完成签到,获得积分10
6秒前
7秒前
Jasper应助qingjun采纳,获得10
8秒前
科研通AI2S应助QWE采纳,获得10
10秒前
DNA甲基转移酶完成签到,获得积分10
10秒前
项无春发布了新的文献求助30
10秒前
发生了什么树完成签到,获得积分10
10秒前
Thi发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
kiki发布了新的文献求助10
17秒前
suhua发布了新的文献求助10
18秒前
三脸茫然完成签到 ,获得积分10
18秒前
千冬完成签到,获得积分10
19秒前
久念发布了新的文献求助10
19秒前
19秒前
FreedomThh完成签到,获得积分10
23秒前
谨慎不二完成签到,获得积分10
23秒前
24秒前
26秒前
吱吱完成签到 ,获得积分10
26秒前
26秒前
26秒前
kiki完成签到,获得积分10
28秒前
JINWEIJIANG完成签到,获得积分10
28秒前
Lucas应助久念采纳,获得10
28秒前
SciGPT应助久念采纳,获得10
28秒前
成就猫咪完成签到,获得积分10
28秒前
lh发布了新的文献求助10
29秒前
30秒前
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187