Optical Pump Terahertz Probe (OPTP) and Time Resolved Terahertz Spectroscopy (TRTS) of emerging solar materials

太赫兹辐射 光电导性 太赫兹光谱与技术 光谱学 光电子学 材料科学 超短脉冲 太赫兹时域光谱学 时间分辨光谱学 光学 激光器 物理 量子力学
作者
Jens Neu
出处
期刊:APL photonics [American Institute of Physics]
卷期号:8 (7) 被引量:9
标识
DOI:10.1063/5.0152726
摘要

Photoconductivity is the crucial benchmark to assess the potential of any emerging material for future solar applications. Many optical techniques, like transient absorption and photoluminescence, explore bound electron states and provide indirect access to photoconductivity. Direct current (DC) measurements under solar simulation determine the total performance of a novel solar device. While this technique has a clear appeal, it involves electrical contacts, causing contact resistance, which impacts the measured conductivity. Furthermore, DC measurements do not provide any insight into ultrafast effects and the photophysics defining a novel material. Terahertz (THz) spectroscopy presents a contact-free technique to measure photoconductivity on a sub-ps time scale. These measurements can be performed on as-synthesized sample materials, including powders. The ultrafast time resolution informs us of trapping dynamics and reveals what physical processes limit the carrier lifetime in a novel material. Additionally, complex conductivity can be measured at THz frequencies. THz-conductivity and photoconductivity shed light on scattering effects, providing a road map toward minimizing these effects. However, THz spectroscopy is less intuitive than widely used DC measurements, and the interpretation of THz-results is more challenging. This tutorial aims to familiarize the reader with the main THz techniques used to explore emerging materials. We will illustrate how carrier lifetimes can be extracted from optical pump THz probe measurements. We will guide the reader through the process of extracting accurate photoconductivities from time resolved THz spectroscopy measurements and present the most commonly used models to describe the underlying physics. We will then discuss the difference between sample and material parameters and highlight potential pitfalls. The tutorial concludes with a perspective view on the ever evolving field of optical pump-THz probe spectroscopy of emerging materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RJFENG完成签到,获得积分10
1秒前
小王发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
研友_VZG7GZ应助一三五七九采纳,获得10
3秒前
Xsf完成签到,获得积分10
4秒前
自信的博超关注了科研通微信公众号
4秒前
科目三应助zhBian采纳,获得10
5秒前
5秒前
酷波er应助123采纳,获得10
5秒前
6秒前
7秒前
坚强的莛发布了新的文献求助10
8秒前
nsk发布了新的文献求助10
8秒前
汉堡包应助缺粥采纳,获得10
8秒前
Akim应助碧蓝问梅采纳,获得10
9秒前
小王发布了新的文献求助10
9秒前
sweet发布了新的文献求助30
10秒前
Hello应助咔滋脆鸡腿堡采纳,获得20
10秒前
volvoamg发布了新的文献求助10
12秒前
研友_Zb151n完成签到,获得积分10
13秒前
14秒前
14秒前
天天快乐应助科研通管家采纳,获得30
15秒前
科目三应助科研通管家采纳,获得10
15秒前
hl应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
hl应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
15秒前
Hello应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
曦子曦子应助科研通管家采纳,获得10
15秒前
浮生应助科研通管家采纳,获得20
15秒前
15秒前
lvsehx发布了新的文献求助10
17秒前
思源应助lcj2022采纳,获得10
17秒前
17秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178480
求助须知:如何正确求助?哪些是违规求助? 2829481
关于积分的说明 7971737
捐赠科研通 2490836
什么是DOI,文献DOI怎么找? 1327984
科研通“疑难数据库(出版商)”最低求助积分说明 635372
版权声明 602904