太赫兹辐射
光电导性
太赫兹光谱与技术
光谱学
光电子学
材料科学
超短脉冲
太赫兹时域光谱学
时间分辨光谱学
光学
激光器
物理
量子力学
出处
期刊:APL photonics
[American Institute of Physics]
日期:2023-07-01
卷期号:8 (7)
被引量:9
摘要
Photoconductivity is the crucial benchmark to assess the potential of any emerging material for future solar applications. Many optical techniques, like transient absorption and photoluminescence, explore bound electron states and provide indirect access to photoconductivity. Direct current (DC) measurements under solar simulation determine the total performance of a novel solar device. While this technique has a clear appeal, it involves electrical contacts, causing contact resistance, which impacts the measured conductivity. Furthermore, DC measurements do not provide any insight into ultrafast effects and the photophysics defining a novel material. Terahertz (THz) spectroscopy presents a contact-free technique to measure photoconductivity on a sub-ps time scale. These measurements can be performed on as-synthesized sample materials, including powders. The ultrafast time resolution informs us of trapping dynamics and reveals what physical processes limit the carrier lifetime in a novel material. Additionally, complex conductivity can be measured at THz frequencies. THz-conductivity and photoconductivity shed light on scattering effects, providing a road map toward minimizing these effects. However, THz spectroscopy is less intuitive than widely used DC measurements, and the interpretation of THz-results is more challenging. This tutorial aims to familiarize the reader with the main THz techniques used to explore emerging materials. We will illustrate how carrier lifetimes can be extracted from optical pump THz probe measurements. We will guide the reader through the process of extracting accurate photoconductivities from time resolved THz spectroscopy measurements and present the most commonly used models to describe the underlying physics. We will then discuss the difference between sample and material parameters and highlight potential pitfalls. The tutorial concludes with a perspective view on the ever evolving field of optical pump-THz probe spectroscopy of emerging materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI