清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GCFMCL: predicting miRNA-drug sensitivity using graph collaborative filtering and multi-view contrastive learning

计算机科学 图形 人工智能 特征(语言学) 机器学习 特征学习 节点(物理) 药物靶点 理论计算机科学 语言学 结构工程 医学 药理学 工程类 哲学
作者
Jinhang Wei,Linlin Zhuo,Ziqing Zhou,Xinze Lian,Xiquan Fu,Xiaojun Yao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:6
标识
DOI:10.1093/bib/bbad247
摘要

Studies have shown that the mechanism of action of many drugs is related to miRNA. In-depth research on the relationship between miRNA and drugs can provide theoretical foundations and practical approaches for various areas, such as drug target discovery, drug repositioning and biomarker research. Traditional biological experiments to test miRNA-drug susceptibility are costly and time-consuming. Thus, sequence- or topology-based deep learning methods are recognized in this field for their efficiency and accuracy. However, these methods have limitations in dealing with sparse topologies and higher-order information of miRNA (drug) feature. In this work, we propose GCFMCL, a model for multi-view contrastive learning based on graph collaborative filtering. To the best of our knowledge, this is the first attempt that incorporates contrastive learning strategy into the graph collaborative filtering framework to predict the sensitivity relationships between miRNA and drug. The proposed multi-view contrastive learning method is divided into topological contrastive objective and feature contrastive objective: (1) For the homogeneous neighbors of the topological graph, we propose a novel topological contrastive learning method via constructing the contrastive target through the topological neighborhood information of nodes. (2) The proposed model obtains feature contrastive targets from high-order feature information according to the correlation of node features, and mines potential neighborhood relationships in the feature space. The proposed multi-view comparative learning effectively alleviates the impact of heterogeneous node noise and graph data sparsity in graph collaborative filtering, and significantly enhances the performance of the model. Our study employs a dataset derived from the NoncoRNA and ncDR databases, encompassing 2049 experimentally validated miRNA-drug sensitivity associations. Five-fold cross-validation shows that the Area Under the Curve (AUC), Area Under the Precision-Recall Curve (AUPR) and F1-score (F1) of GCFMCL reach 95.28%, 95.66% and 89.77%, which outperforms the state-of-the-art (SOTA) method by the margin of 2.73%, 3.42% and 4.96%, respectively. Our code and data can be accessed at https://github.com/kkkayle/GCFMCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliu完成签到,获得积分10
17秒前
20秒前
Emperor完成签到 ,获得积分0
21秒前
A,w携念e行ོ完成签到,获得积分10
24秒前
Cole发布了新的文献求助10
26秒前
风信子完成签到,获得积分10
35秒前
Aaman完成签到,获得积分10
1分钟前
Zrysaa完成签到,获得积分10
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
lovexa完成签到,获得积分10
1分钟前
wxyinhefeng完成签到 ,获得积分10
2分钟前
a46539749完成签到 ,获得积分10
2分钟前
leena完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
海盐气泡水完成签到,获得积分10
2分钟前
golfgold完成签到,获得积分10
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
3分钟前
lt0217发布了新的文献求助10
3分钟前
jlwang完成签到,获得积分10
3分钟前
上下完成签到 ,获得积分10
3分钟前
3分钟前
风秋杨完成签到 ,获得积分10
3分钟前
Arthur完成签到 ,获得积分10
3分钟前
深情安青应助毕书白采纳,获得10
3分钟前
juan完成签到 ,获得积分10
3分钟前
管靖易完成签到 ,获得积分10
3分钟前
华仔应助毕书白采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
毕书白发布了新的文献求助10
5分钟前
5分钟前
浚稚完成签到 ,获得积分10
5分钟前
彭于晏应助小袁搜题采纳,获得10
5分钟前
5分钟前
毕书白发布了新的文献求助10
5分钟前
缥缈的幻雪完成签到 ,获得积分10
5分钟前
ste56发布了新的文献求助10
6分钟前
小西完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500090
科研通“疑难数据库(出版商)”最低求助积分说明 693334
邀请新用户注册赠送积分活动 691477