Agricultural UAV trajectory planning by incorporating multi-mechanism improved grey wolf optimization algorithm

数学优化 计算机科学 粒子群优化 差异进化 运动规划 进化算法 稳健性(进化) 算法 数学 人工智能 机器人 生物化学 基因 化学
作者
Xinyu Liu,Guangquan Li,Haoyuan Yang,Nianru Zhang,Longfei Wang,Peng Shao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:233: 120946-120946 被引量:47
标识
DOI:10.1016/j.eswa.2023.120946
摘要

Unmanned aerial vehicle (UAV) trajectory planning plays an essential role in agricultural production and biological control. To solve the agricultural UAV trajectory planning problem, a multi-mechanism collaborative improved grey wolf optimization algorithm (NAS-GWO) is proposed. In NAS-GWO, the evolutionary boundary constraint processing mechanism is introduced to update the position of the grey wolf individuals that cross the boundary in time to retain the position information of the optimal individuals to the largest degree to enhance the search accuracy of the algorithm. Then, the Gaussian mutation strategy and spiral function are used as perturbation mechanisms to help the algorithm jump out of the local optimum in time to strengthen the exploitation capability of NAS-GWO. Meanwhile, the improved Sigmoid function is used as a nonlinear convergence factor for balancing the exploitation and exploration of the NAS-GWO. By comparing NAS-GWO with ten advanced metaheuristic algorithms on 20 CEC2017 benchmark functions, the experimental results show that the NAS-GWO algorithm has superior merit seeking and robustness. Moreover, the agricultural UAV trajectory planning problem is solved using NAS-GWO. The experimental results show that the NAS-GWO algorithm plans a more viable and stable trajectory path in four different scale missions, while the most important is that it requires less cost. Among them, the algorithm reduces 27.93%, 38.15%, 32.32%, 34.11%, 10.63%, and 13.48% on average in cost function values compared to Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Aquila Optimizer (AO), Differential Evolution (DE), Dung Beetle Optimizer (DBO), and Grey Wolf Optimization algorithm (GWO), thus proving the effectiveness and significance of NAS-GWO in the agricultural UAV trajectory path planning problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雯雯完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
科研通AI5应助LZZ采纳,获得10
刚刚
情怀应助WxChen采纳,获得10
刚刚
Akim应助WxChen采纳,获得10
1秒前
深情安青应助WxChen采纳,获得10
1秒前
请叫我风吹麦浪应助WxChen采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
Dean完成签到 ,获得积分10
2秒前
乔乔发布了新的文献求助10
2秒前
小蘑菇应助ht2025采纳,获得10
2秒前
耍酷花卷发布了新的文献求助10
3秒前
微笑如冰发布了新的文献求助10
3秒前
二二二发布了新的文献求助10
3秒前
一颗柚子完成签到,获得积分10
3秒前
abc完成签到 ,获得积分10
3秒前
PMX发布了新的文献求助10
4秒前
标致小伙发布了新的文献求助10
4秒前
joysa完成签到,获得积分10
4秒前
131343完成签到,获得积分10
4秒前
FashionBoy应助慕子采纳,获得10
5秒前
5秒前
5秒前
L龙发布了新的文献求助10
6秒前
6秒前
善学以致用应助sunwending采纳,获得10
6秒前
东郭秋凌完成签到,获得积分10
6秒前
胤宸完成签到,获得积分10
7秒前
8秒前
8秒前
hohokuz完成签到,获得积分20
8秒前
一切顺遂应助Adian采纳,获得100
8秒前
8秒前
April发布了新的文献求助20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762