Optimization of Storage Location Assignment for Non-Traditional Layout Warehouses Based on the Firework Algorithm

仓库 计算机科学 过程(计算) 理论(学习稳定性) MATLAB语言 拣选订单 持续性 算法 数学优化 数学 营销 机器学习 业务 操作系统 生态学 生物
作者
Xuan Zhang,Tiantian Mo,Yougong Zhang
出处
期刊:Sustainability [MDPI AG]
卷期号:15 (13): 10242-10242 被引量:5
标识
DOI:10.3390/su151310242
摘要

With the development of logistics, sustainable warehousing has become increasingly important. To promote the warehousing efficiency, non-traditional layout warehouses and storage location assignments have been proposed separately. However, they are rarely combined. Taking inspiration from the advantages of non-traditional layout warehouses and storage location assignments, a storage location assignment optimization algorithm for non-traditional layout warehouses is proposed to further improve the efficiency and sustainability of warehousing. By reducing the picking distance and picking time, this algorithm further boosts the warehouse efficiency and sustainability, saving energy in the process and resulting in positive effects on the environment and the economy. In the process of establishing the model, taking the order-picking efficiency and shelf stability as optimizing objectives, a multi-objective optimization model is derived. Then, a storage location assignment optimization algorithm based on the firework algorithm is developed using adaptive strategies for explosion and selection to enhance the convergence rate and optimization performance of the algorithm. With this approach, the storage location assignment optimization for non-traditional layout warehouses can be handled well. Finally, a set of comparative simulations is carried out with MATLAB, and the results show various positive effects for sustainable warehouse management, such as a higher order-picking efficiency, better shelf stability, time and resource savings, and so on.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助黄奥龙采纳,获得10
1秒前
晴天发布了新的文献求助10
1秒前
wind关注了科研通微信公众号
2秒前
2秒前
可爱的函函应助春深半夏采纳,获得10
2秒前
Adc应助fangyuan采纳,获得20
3秒前
富贵李发布了新的文献求助10
3秒前
3秒前
ding应助宇月幸成采纳,获得10
3秒前
3秒前
Azhou完成签到,获得积分10
3秒前
可爱小铭完成签到,获得积分10
3秒前
FAFA发布了新的文献求助10
4秒前
5秒前
期辰完成签到,获得积分10
5秒前
FFFFF发布了新的文献求助10
6秒前
小王发布了新的文献求助10
6秒前
7秒前
可耐的妙芙完成签到,获得积分20
7秒前
chris应助路夜白采纳,获得10
8秒前
迅速大山发布了新的文献求助10
8秒前
8秒前
chris应助路夜白采纳,获得10
8秒前
111发布了新的文献求助30
8秒前
摆烂猪猪发布了新的文献求助10
8秒前
zjj发布了新的文献求助10
8秒前
10秒前
踏实书本完成签到,获得积分10
10秒前
潇洒斑马完成签到 ,获得积分10
11秒前
11秒前
科研小白完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
jjb完成签到,获得积分10
12秒前
自由悟空完成签到,获得积分10
12秒前
Nn1发布了新的文献求助10
13秒前
zhut完成签到,获得积分20
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454