An Improved YOLO for Road and Vehicle Target Detection Model

计算机科学 卡车 骨干网 趋同(经济学) 人工智能 功能(生物学) 特征提取 模式识别(心理学) 算法 数据挖掘 工程类 计算机网络 汽车工程 进化生物学 生物 经济增长 经济
作者
Qinghe Yu,Huaiqin Liu,Qu Wu
出处
期刊:Journal of ICT standardisation [River Publishers]
被引量:2
标识
DOI:10.13052/jicts2245-800x.1125
摘要

The yolo series is the prevalent algorithm for target identification at now. Nevertheless, due to the high real-time, mixed target parity, and obscured target features of vehicle target recognition, missed detection and incorrect detection are common. It enhances the yolo algorithm in order to enhance the network performance of this method while identifying vehicle targets. To properly portray the improvement impact, the yolov4 method is used as the improvement baseline. First, the structure of the DarkNet backbone network is modified, and a more efficient backbone network, FBR-DarkNet, is presented to enhance the effect of feature extraction. In order to better detect obstructed cars, a thin feature layer for focused detection of tiny objects is added to the Neck module to increase the recognition impact. The attention mechanism module CBAM is included to increase the model’s precision and speed of convergence. The lightweight network replaces the MISH function with the H-SWISH function, and the improved algorithm improves by 4.76 percentage points over the original network on the BDD100K data set, with the mAP metrics improving by 8 points, 8 points, and 7 points, respectively, for the car, truck, and bus categories. Compared to other newer and better algorithms, it nevertheless maintains a pretty decent performance. It satisfies the criteria for real-time detection and significantly improves the detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助左悬月采纳,获得30
1秒前
隐形曼青应助爱听歌无极采纳,获得10
1秒前
科目三应助开放夏旋采纳,获得10
1秒前
Leonard发布了新的文献求助10
2秒前
暖雪儿完成签到,获得积分10
2秒前
FashionBoy应助会举重的树采纳,获得10
2秒前
gm完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
科研通AI5应助yb采纳,获得10
4秒前
小孙发布了新的文献求助10
4秒前
2021完成签到 ,获得积分10
4秒前
xixi完成签到,获得积分10
4秒前
华仔应助幸福的鞋垫采纳,获得10
6秒前
完美世界应助剑诗杜康采纳,获得10
7秒前
尘埃发布了新的文献求助10
8秒前
蠢宝贝发布了新的文献求助10
9秒前
9秒前
9秒前
善学以致用应助dog采纳,获得10
9秒前
慕青应助Lyj采纳,获得10
10秒前
啾啾完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
温婉的含芙完成签到,获得积分10
14秒前
14秒前
小小鱼完成签到 ,获得积分10
16秒前
16秒前
无心的平蝶应助柚子蟹采纳,获得80
16秒前
虚幻中蓝完成签到,获得积分20
16秒前
17秒前
子车雁开完成签到,获得积分10
17秒前
bingyu306完成签到,获得积分10
18秒前
刘妞妞完成签到,获得积分10
18秒前
幸福大白发布了新的文献求助30
18秒前
42关注了科研通微信公众号
19秒前
小羊要加油完成签到 ,获得积分10
19秒前
慕青应助ybwei2008_163采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547101
求助须知:如何正确求助?哪些是违规求助? 3978164
关于积分的说明 12318204
捐赠科研通 3646677
什么是DOI,文献DOI怎么找? 2008295
邀请新用户注册赠送积分活动 1043874
科研通“疑难数据库(出版商)”最低求助积分说明 932515