Complementary features-aware attentive multi-adapter network for hyperspectral object tracking

高光谱成像 计算机科学 人工智能 判别式 模式识别(心理学) 最小边界框 降维 BitTorrent跟踪器 计算机视觉 眼动 图像(数学)
作者
Shaoqi Ma,Abdolraheem Khader,Liang Xiao
标识
DOI:10.1117/12.2680541
摘要

Hyperspectral object tracking aims to estimate the bounding box for the given target using hyperspectral data. Different from traditional color videos, hyperspectral videos have more abundant band information for their capacity to capture the reflectance spectrum of the target at a wider range of wavelengths provides important capabilities and opportunities, which provides new capabilities for discriminating targets in complex scenes, but also presents new challenges. The limited dataset and the high dimensionality of hyperspectral data are two new challenges in constructing hyperspectral trackers, resulting in existing hyperspectral tracking methods based mainly on correlation filters. This paper proposes a new Complementary Features-aware Attentive Multi-Adapter Network (CFA-MANet), which can train a neural network well and achieve high performance for Hyperspectral Object tracking just using the limited dataset. Specifically, we add a complementary features-aware module to the multi-adapter network, which employs two different strategies to reduce the dimensionality of hyperspectral data from two complementary perspectives, and the joint implementation of these two strategies results in a reduction in the amount of computed data and parameters of the designed neural network while achieving competitive results. Moreover, spatial and channel attention modules are used to learn a wider range of contexts and improve the representation of different semantic features, respectively. Crossattention is used to learn complementary information and thus generate more discriminative representations. Experimental results on hyperspectral datasets show that our method achieves the best results compared to several recent hyperspectral tracking methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Iris完成签到,获得积分10
1秒前
竹林风箫完成签到,获得积分10
1秒前
苗苗043完成签到,获得积分10
1秒前
renovel完成签到,获得积分10
1秒前
Maor完成签到,获得积分10
3秒前
3秒前
3秒前
marco完成签到 ,获得积分10
4秒前
赵某人完成签到,获得积分10
4秒前
科研通AI5应助nextconnie采纳,获得10
5秒前
馨妈发布了新的文献求助10
5秒前
代杰居然完成签到 ,获得积分10
5秒前
science完成签到,获得积分10
5秒前
6秒前
qinkoko完成签到,获得积分10
7秒前
dd99081完成签到 ,获得积分10
7秒前
小屁孩完成签到,获得积分0
7秒前
知意完成签到,获得积分10
7秒前
新手完成签到 ,获得积分10
8秒前
yuncong323完成签到,获得积分10
8秒前
碧蓝香芦完成签到 ,获得积分10
9秒前
flywo发布了新的文献求助10
9秒前
萌萌完成签到,获得积分20
10秒前
特安谭完成签到,获得积分10
10秒前
Chasing完成签到 ,获得积分10
11秒前
SONGYEZI应助CyrusSo524采纳,获得200
11秒前
yilin完成签到 ,获得积分10
11秒前
qingshu完成签到,获得积分20
13秒前
可乐全糖微冰完成签到,获得积分10
13秒前
周涛完成签到,获得积分10
13秒前
馨妈完成签到,获得积分20
14秒前
zhiyu完成签到,获得积分10
14秒前
尊敬枕头完成签到 ,获得积分10
14秒前
深情安青应助好运采纳,获得10
14秒前
15秒前
伊晨完成签到,获得积分10
16秒前
桐桐应助拜托了newidea采纳,获得10
16秒前
汤汤蜡笔小新完成签到 ,获得积分10
16秒前
tinydog完成签到,获得积分10
17秒前
hao完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555929
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391387
捐赠科研通 2831234
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890