Quick Identification of Open/Closed State of GIS Switch Based on Vibration Detection and Deep Learning

成交(房地产) 开关设备 计算机科学 人工智能 规范化(社会学) 振动 卷积神经网络 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 噪音(视频) 工程类 图像(数学) 电气工程 声学 物理 社会学 政治学 法学 人类学
作者
Kun Zhang,Yong Zhang,Junjie Wu,Zhizhong Li
出处
期刊:Electronics [MDPI AG]
卷期号:12 (14): 3204-3204 被引量:3
标识
DOI:10.3390/electronics12143204
摘要

The rapid and accurate identification of the opening and closing state of the knife switch in a gas insulated switchgear (GIS) is very important for the timely detection of equipment faults and for the reduction of related accidents. However, existing technologies, such as image recognition, are vulnerable to weather or light intensity, while microswitch, attitude sensing and other methods are unable to induce equipment power failure with sufficient speed, which brings many new challenges to the operation and maintenance of a GIS. Therefore, this research designs a GIS shell vibration detection system for knife switch state discrimination, introduces a deep learning algorithm for knife switch vibration signal analysis, and proposes a fast convolutional neural network (FCNN) to identify the knife switch state. For the designed FCNN, a normalization layer and a nonlinear activation layer are used after each convolution layer to obviously reduce feature quantity and increase algorithm efficiency. In order to test the recognition performance based on the vibration detection system, this study carried out two kinds of knife switch opening and closing experiments. One group with artificial noise was added, the other group did not include artifical noise, and a corresponding data set was constructed. The experimental results show that the recognition accuracy for both datasets reaches 100%, and the FCNN algorithm is better than the five classical algorithms in terms of prediction efficiency. This study shows that the vibration detection technology based on deep learning can be used to effectively identify the opening and closing state of a GIS knife switch, and is expected to be promoted and applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助俭朴大碗采纳,获得10
刚刚
borisgugugugu完成签到,获得积分10
2秒前
2秒前
雨木木发布了新的文献求助10
2秒前
daqing发布了新的文献求助10
2秒前
wheattt发布了新的文献求助10
2秒前
2秒前
njr发布了新的文献求助10
4秒前
5秒前
何平完成签到,获得积分10
7秒前
是否完成签到,获得积分10
7秒前
8秒前
大模型应助wuye采纳,获得30
8秒前
等待凝海发布了新的文献求助10
8秒前
8秒前
清清佑佑发布了新的文献求助10
8秒前
linli发布了新的文献求助10
9秒前
万能图书馆应助wheattt采纳,获得10
9秒前
科研通AI5应助lgf采纳,获得10
10秒前
10秒前
香蕉觅云应助mmm采纳,获得10
12秒前
13秒前
下载文章即可完成签到,获得积分10
14秒前
wei发布了新的文献求助10
14秒前
15秒前
大模型应助曾经二娘采纳,获得10
15秒前
舍得完成签到,获得积分10
16秒前
yyyy完成签到 ,获得积分10
19秒前
苦行僧完成签到,获得积分10
20秒前
明晨应助阿发采纳,获得10
20秒前
20秒前
lgf完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
zhangjianzeng完成签到,获得积分10
24秒前
等待凝海完成签到,获得积分10
26秒前
曾经二娘发布了新的文献求助10
27秒前
月亮发布了新的文献求助10
27秒前
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479351
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116371
捐赠科研通 2761742
什么是DOI,文献DOI怎么找? 1515526
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699951