Quick Identification of Open/Closed State of GIS Switch Based on Vibration Detection and Deep Learning

成交(房地产) 开关设备 计算机科学 人工智能 规范化(社会学) 振动 卷积神经网络 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 噪音(视频) 工程类 图像(数学) 电气工程 声学 物理 社会学 政治学 法学 人类学
作者
Kun Zhang,Yong Zhang,Junjie Wu,Zhizhong Li
出处
期刊:Electronics [MDPI AG]
卷期号:12 (14): 3204-3204 被引量:3
标识
DOI:10.3390/electronics12143204
摘要

The rapid and accurate identification of the opening and closing state of the knife switch in a gas insulated switchgear (GIS) is very important for the timely detection of equipment faults and for the reduction of related accidents. However, existing technologies, such as image recognition, are vulnerable to weather or light intensity, while microswitch, attitude sensing and other methods are unable to induce equipment power failure with sufficient speed, which brings many new challenges to the operation and maintenance of a GIS. Therefore, this research designs a GIS shell vibration detection system for knife switch state discrimination, introduces a deep learning algorithm for knife switch vibration signal analysis, and proposes a fast convolutional neural network (FCNN) to identify the knife switch state. For the designed FCNN, a normalization layer and a nonlinear activation layer are used after each convolution layer to obviously reduce feature quantity and increase algorithm efficiency. In order to test the recognition performance based on the vibration detection system, this study carried out two kinds of knife switch opening and closing experiments. One group with artificial noise was added, the other group did not include artifical noise, and a corresponding data set was constructed. The experimental results show that the recognition accuracy for both datasets reaches 100%, and the FCNN algorithm is better than the five classical algorithms in terms of prediction efficiency. This study shows that the vibration detection technology based on deep learning can be used to effectively identify the opening and closing state of a GIS knife switch, and is expected to be promoted and applied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
加减乘除发布了新的文献求助10
刚刚
ccc应助无奈的铅笔采纳,获得10
1秒前
充电宝应助一只蜗牛采纳,获得10
2秒前
orixero应助tesla采纳,获得10
2秒前
lucy完成签到,获得积分10
3秒前
壮观冷卉完成签到,获得积分10
3秒前
内向苡完成签到,获得积分10
4秒前
谨慎寻冬完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
MM完成签到,获得积分10
4秒前
5秒前
玺月洛离完成签到,获得积分10
5秒前
chen完成签到 ,获得积分10
5秒前
母广明发布了新的文献求助10
6秒前
yaosichao完成签到,获得积分10
6秒前
神麒小雪发布了新的文献求助10
6秒前
开心的访卉应助小惊麟采纳,获得10
6秒前
hualidy完成签到,获得积分10
7秒前
007完成签到,获得积分10
7秒前
8秒前
善学以致用应助azai采纳,获得10
8秒前
哈雷彗星完成签到,获得积分10
8秒前
伶俐一曲完成签到,获得积分10
8秒前
比巴卜完成签到,获得积分20
9秒前
星星完成签到,获得积分10
9秒前
小蘑菇应助跳跃稀采纳,获得10
9秒前
安东尼奥完成签到,获得积分10
10秒前
李歪歪完成签到 ,获得积分10
10秒前
wanci应助Tomi采纳,获得10
10秒前
元气糖完成签到,获得积分10
11秒前
布知道完成签到 ,获得积分10
11秒前
大强完成签到,获得积分10
12秒前
领导范儿应助937989656采纳,获得10
13秒前
13秒前
科研小白完成签到,获得积分10
13秒前
zhaoyu完成签到 ,获得积分10
14秒前
你的样子发布了新的文献求助10
14秒前
不安海蓝完成签到,获得积分10
15秒前
健壮的鸽子完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890