清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of iron metabolism-related genes as prognostic indicators for papillary thyroid carcinoma: a retrospective study

医学 肿瘤科 列线图 甲状腺癌 内科学 比例危险模型 甲状腺癌 甲状腺乳突癌 癌变 回顾性队列研究 转移 癌症 甲状腺 癌症研究
作者
Tiefeng Jin,Luqi Ge,Jianqiang Chen,Wei Wang,Lizhuo Zhang,Minghua Ge
出处
期刊:PeerJ [PeerJ]
卷期号:11: e15592-e15592 被引量:1
标识
DOI:10.7717/peerj.15592
摘要

Background The thyroid cancer subtype that occurs more frequently is papillary thyroid carcinoma (PTC). Despite a good surgical outcome, treatment with traditional antitumor therapy does not offer ideal results for patients with radioiodine resistance, recurrence, and metastasis. The evidence for the connection between iron metabolism imbalance and cancer development and oncogenesis is growing. Nevertheless, the iron metabolism impact on PTC prognosis is still indefinite. Methods Herein, we acquired the medical data and gene expression of individuals with PTC from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Typically, three predictive iron metabolism-related genes (IMRGs) were examined and employed to build a risk score (RS) model via the least absolute shrinkage and selection operator (LASSO) regression, univariate Cox, and differential gene expression analyses. Then we analyzed somatic mutation and immune cell infiltration among RS groups. We also validated the prognostic value of two IMRGs (SFXN3 and TFR2) by verifying their biological function through in vitro experiments. Results Based on RS, all patients with PTC were stratified into low- and high-risk groups, where Kaplan-Meier analysis indicated that disease-free survival (DFS) in the high-risk group was much lower than in the low-risk group ( P < 0.0001). According to ROC analysis, the RS model successfully predicted the 1-, 3-, and 5-year DFS of individuals with PTC. Additionally, in the TCGA cohort, a nomogram model with RS was developed and exhibited a strong capability to anticipate PTC patients’ DFS. In the high-risk group, the enriched pathological processes and signaling mechanisms were detected utilizing the gene set enrichment analysis (GSEA). Moreover, the high-risk group had a significantly higher level of BRAF mutation frequency, tumor mutation burden, and immune cell infiltration than the low-risk group. In vitro experiments found that silencing SFXN3 or TFR2 significantly reduced cell viability. Conclusion Collectively, our predictive model depended on IMRGs in PTC, which could be potentially utilized to predict the PTC patients’ prognosis, schedule follow-up plans, and provide potential targets against PTC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又壮了完成签到 ,获得积分10
3秒前
合适醉蝶完成签到 ,获得积分10
23秒前
大模型应助缓慢的绝施采纳,获得10
41秒前
科yt完成签到,获得积分10
41秒前
小豆豆完成签到 ,获得积分10
45秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
NattyPoe应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
NattyPoe应助科研通管家采纳,获得10
47秒前
47秒前
自由文博完成签到 ,获得积分10
54秒前
双儿完成签到 ,获得积分10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
Judy完成签到 ,获得积分0
1分钟前
大方的荟完成签到 ,获得积分10
1分钟前
NexusExplorer应助Marshall采纳,获得10
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
辛勤的喉完成签到 ,获得积分10
1分钟前
1分钟前
Aeeeeeeon完成签到 ,获得积分10
1分钟前
Marshall发布了新的文献求助10
1分钟前
TOUHOUU完成签到 ,获得积分10
1分钟前
槿裡完成签到 ,获得积分10
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
春花完成签到 ,获得积分10
2分钟前
7788完成签到,获得积分10
2分钟前
Ava应助一颗困困豆耶采纳,获得10
2分钟前
无花果应助一颗困困豆耶采纳,获得10
2分钟前
李健的小迷弟应助Marshall采纳,获得10
2分钟前
2分钟前
asss完成签到 ,获得积分10
2分钟前
Marshall发布了新的文献求助10
3分钟前
周全完成签到 ,获得积分10
3分钟前
科研go完成签到,获得积分10
3分钟前
岩松完成签到 ,获得积分10
3分钟前
3分钟前
高高珩完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
上帝的宠儿完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789212
求助须知:如何正确求助?哪些是违规求助? 5717008
关于积分的说明 15474363
捐赠科研通 4917123
什么是DOI,文献DOI怎么找? 2646783
邀请新用户注册赠送积分活动 1594446
关于科研通互助平台的介绍 1548914