Emotion Recognition based on fusion of multimodal physiological signals using LSTM and GRU

计算机科学 判别式 情绪识别 人工智能 保险丝(电气) 模式识别(心理学) 语音识别 面部表情 融合 可靠性(半导体) 传感器融合 机器学习 工程类 哲学 物理 电气工程 功率(物理) 量子力学 语言学
作者
N. Priyadarshini,J Aravinth
标识
DOI:10.1109/icsccc58608.2023.10176510
摘要

Emotion recognition has become an important research topic to solve the practical problems faced by humans. The traditional method of Emotion recognition using facial expressions entails social issues such as privacy threats and reliability. The state of the person's real emotion can be reflected through physiological signals which are considered to be time series data. Emotion recognition using Multi-modal physiological signals gives better discriminative information when compared to information provided by the unimodal physiological signal. In this method, various physiological signals such as ECG, EEG, Respiration, and Temperature are segmented, fused and classified using Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM). A multimodal fusion network is designed to fuse the features of four physiological signals. These features are classified into three classes namely sad, neutral and happy. The model designed is evaluated using three emotion datasets such as SEED, DREAMER and WESAD datasets respectively. From the results obtained it was observed that the proposed method achieves an average accuracy of 74% for multi-modal fusion using LSTM and 73% using GRU while 1DCNN acquired an accuracy of 61% for multi-model fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智橘子发布了新的文献求助10
2秒前
LIU发布了新的文献求助10
2秒前
英姑应助淡水痕采纳,获得10
2秒前
夜安发布了新的文献求助10
2秒前
科目三应助忧郁的猕猴桃采纳,获得10
4秒前
4秒前
zhaoxi完成签到 ,获得积分10
5秒前
5秒前
Owen应助公孙世往采纳,获得10
8秒前
我是老大应助魅猫使者采纳,获得10
9秒前
写论文的圈圈完成签到,获得积分10
9秒前
wonhui发布了新的文献求助10
10秒前
10秒前
11秒前
卡卡西应助科研通管家采纳,获得20
11秒前
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
yookia应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
12秒前
bububusbu完成签到,获得积分10
12秒前
刘爽应助科研通管家采纳,获得10
12秒前
yookia应助科研通管家采纳,获得10
12秒前
12秒前
利利应助科研通管家采纳,获得10
12秒前
卡卡西应助科研通管家采纳,获得20
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
secbox完成签到,获得积分10
13秒前
超帅连虎发布了新的文献求助30
16秒前
干净月亮完成签到,获得积分10
17秒前
wenbo完成签到,获得积分0
17秒前
17秒前
18秒前
匹诺曹发布了新的文献求助10
18秒前
18秒前
Jiang完成签到,获得积分10
19秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150