已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Domain-adaptive Person Re-identification without Cross-camera Paired Samples

判别式 人工智能 计算机科学 匹配(统计) 特征(语言学) 领域(数学分析) 身份(音乐) 一般化 模式识别(心理学) 鉴定(生物学) 任务(项目管理) 计算机视觉 数学 工程类 统计 数学分析 哲学 物理 生物 植物 系统工程 语言学 声学
作者
Huafeng Li,Yanmei Mao,Yafei Zhang,Guanqiu Qi,Zhengtao Yu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2307.06533
摘要

Existing person re-identification (re-ID) research mainly focuses on pedestrian identity matching across cameras in adjacent areas. However, in reality, it is inevitable to face the problem of pedestrian identity matching across long-distance scenes. The cross-camera pedestrian samples collected from long-distance scenes often have no positive samples. It is extremely challenging to use cross-camera negative samples to achieve cross-region pedestrian identity matching. Therefore, a novel domain-adaptive person re-ID method that focuses on cross-camera consistent discriminative feature learning under the supervision of unpaired samples is proposed. This method mainly includes category synergy co-promotion module (CSCM) and cross-camera consistent feature learning module (CCFLM). In CSCM, a task-specific feature recombination (FRT) mechanism is proposed. This mechanism first groups features according to their contributions to specific tasks. Then an interactive promotion learning (IPL) scheme between feature groups is developed and embedded in this mechanism to enhance feature discriminability. Since the control parameters of the specific task model are reduced after division by task, the generalization ability of the model is improved. In CCFLM, instance-level feature distribution alignment and cross-camera identity consistent learning methods are constructed. Therefore, the supervised model training is achieved under the style supervision of the target domain by exchanging styles between source-domain samples and target-domain samples, and the challenges caused by the lack of cross-camera paired samples are solved by utilizing cross-camera similar samples. In experiments, three challenging datasets are used as target domains, and the effectiveness of the proposed method is demonstrated through four experimental settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助芯之痕采纳,获得30
3秒前
机灵的忆梅完成签到 ,获得积分10
4秒前
xaopng完成签到,获得积分10
7秒前
七慕凉应助Evi采纳,获得10
7秒前
napnap完成签到 ,获得积分10
10秒前
None完成签到 ,获得积分10
10秒前
极地东风完成签到,获得积分10
13秒前
整齐谷芹完成签到,获得积分10
15秒前
深海之镜完成签到,获得积分10
16秒前
林洁佳发布了新的文献求助10
17秒前
17秒前
Alvess完成签到 ,获得积分10
19秒前
整齐谷芹发布了新的文献求助30
21秒前
22秒前
25秒前
Ning完成签到,获得积分10
27秒前
桐桐应助科研通管家采纳,获得30
28秒前
量子星尘发布了新的文献求助10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
Liu应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
28秒前
竹萧发布了新的文献求助10
29秒前
29秒前
纯真衬衫关注了科研通微信公众号
31秒前
ziyewutong完成签到,获得积分10
32秒前
33秒前
33秒前
33秒前
33秒前
万卷书完成签到 ,获得积分10
34秒前
aslink完成签到,获得积分10
35秒前
CHEN发布了新的文献求助10
35秒前
36秒前
花花521完成签到,获得积分10
36秒前
沉默小博发布了新的文献求助20
38秒前
重重发布了新的文献求助10
38秒前
可耐的青雪完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976572
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204365
捐赠科研通 3257284
什么是DOI,文献DOI怎么找? 1798667
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806577