Domain-adaptive Person Re-identification without Cross-camera Paired Samples

判别式 人工智能 计算机科学 匹配(统计) 特征(语言学) 领域(数学分析) 身份(音乐) 一般化 模式识别(心理学) 鉴定(生物学) 任务(项目管理) 计算机视觉 数学 工程类 统计 数学分析 语言学 哲学 物理 植物 系统工程 声学 生物
作者
Huafeng Li,Yanmei Mao,Yafei Zhang,Guanqiu Qi,Zhengtao Yu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2307.06533
摘要

Existing person re-identification (re-ID) research mainly focuses on pedestrian identity matching across cameras in adjacent areas. However, in reality, it is inevitable to face the problem of pedestrian identity matching across long-distance scenes. The cross-camera pedestrian samples collected from long-distance scenes often have no positive samples. It is extremely challenging to use cross-camera negative samples to achieve cross-region pedestrian identity matching. Therefore, a novel domain-adaptive person re-ID method that focuses on cross-camera consistent discriminative feature learning under the supervision of unpaired samples is proposed. This method mainly includes category synergy co-promotion module (CSCM) and cross-camera consistent feature learning module (CCFLM). In CSCM, a task-specific feature recombination (FRT) mechanism is proposed. This mechanism first groups features according to their contributions to specific tasks. Then an interactive promotion learning (IPL) scheme between feature groups is developed and embedded in this mechanism to enhance feature discriminability. Since the control parameters of the specific task model are reduced after division by task, the generalization ability of the model is improved. In CCFLM, instance-level feature distribution alignment and cross-camera identity consistent learning methods are constructed. Therefore, the supervised model training is achieved under the style supervision of the target domain by exchanging styles between source-domain samples and target-domain samples, and the challenges caused by the lack of cross-camera paired samples are solved by utilizing cross-camera similar samples. In experiments, three challenging datasets are used as target domains, and the effectiveness of the proposed method is demonstrated through four experimental settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助杨一一采纳,获得10
1秒前
1秒前
1秒前
简单的仰发布了新的文献求助10
3秒前
852应助自信的高山采纳,获得10
3秒前
4秒前
小二郎应助勤劳滑板采纳,获得10
4秒前
学术虫发布了新的文献求助10
4秒前
jamaisvu完成签到 ,获得积分10
5秒前
5秒前
6秒前
嘟嘟发布了新的文献求助10
6秒前
Wang发布了新的文献求助30
6秒前
绝望的文盲完成签到,获得积分10
6秒前
大模型应助小歘歘采纳,获得10
6秒前
cindy5620发布了新的文献求助10
7秒前
7秒前
wzr发布了新的文献求助10
7秒前
GuanguanYaa发布了新的文献求助10
8秒前
李健的小迷弟应助寻光人采纳,获得10
9秒前
11秒前
11秒前
姜折酒发布了新的文献求助10
11秒前
11秒前
简单的仰完成签到,获得积分20
12秒前
无花果应助学术虫采纳,获得10
12秒前
张11发布了新的文献求助10
12秒前
sandyleung完成签到,获得积分10
12秒前
13秒前
jingyu完成签到,获得积分10
17秒前
CHSLN发布了新的文献求助10
17秒前
Barry发布了新的文献求助10
17秒前
18秒前
在水一方应助雷鸣惊动采纳,获得10
18秒前
长生发布了新的文献求助10
18秒前
19秒前
迷路达完成签到,获得积分10
19秒前
Huan发布了新的文献求助10
19秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414