Domain-adaptive Person Re-identification without Cross-camera Paired Samples

判别式 人工智能 计算机科学 匹配(统计) 特征(语言学) 领域(数学分析) 身份(音乐) 一般化 模式识别(心理学) 鉴定(生物学) 任务(项目管理) 计算机视觉 数学 工程类 统计 数学分析 哲学 物理 生物 植物 系统工程 语言学 声学
作者
Huafeng Li,Yanmei Mao,Yafei Zhang,Guanqiu Qi,Zhengtao Yu
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2307.06533
摘要

Existing person re-identification (re-ID) research mainly focuses on pedestrian identity matching across cameras in adjacent areas. However, in reality, it is inevitable to face the problem of pedestrian identity matching across long-distance scenes. The cross-camera pedestrian samples collected from long-distance scenes often have no positive samples. It is extremely challenging to use cross-camera negative samples to achieve cross-region pedestrian identity matching. Therefore, a novel domain-adaptive person re-ID method that focuses on cross-camera consistent discriminative feature learning under the supervision of unpaired samples is proposed. This method mainly includes category synergy co-promotion module (CSCM) and cross-camera consistent feature learning module (CCFLM). In CSCM, a task-specific feature recombination (FRT) mechanism is proposed. This mechanism first groups features according to their contributions to specific tasks. Then an interactive promotion learning (IPL) scheme between feature groups is developed and embedded in this mechanism to enhance feature discriminability. Since the control parameters of the specific task model are reduced after division by task, the generalization ability of the model is improved. In CCFLM, instance-level feature distribution alignment and cross-camera identity consistent learning methods are constructed. Therefore, the supervised model training is achieved under the style supervision of the target domain by exchanging styles between source-domain samples and target-domain samples, and the challenges caused by the lack of cross-camera paired samples are solved by utilizing cross-camera similar samples. In experiments, three challenging datasets are used as target domains, and the effectiveness of the proposed method is demonstrated through four experimental settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TLDX完成签到,获得积分10
1秒前
飒飒发布了新的文献求助10
1秒前
HH发布了新的文献求助30
3秒前
大橙子发布了新的文献求助10
4秒前
5秒前
月月完成签到,获得积分10
5秒前
5秒前
哆啦A梦完成签到,获得积分10
6秒前
了尘完成签到,获得积分10
7秒前
wangnn发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
体贴的叛逆者完成签到,获得积分10
9秒前
幸福的鑫鹏完成签到,获得积分10
9秒前
孤海未蓝完成签到,获得积分10
10秒前
彭于晏应助飒飒采纳,获得10
11秒前
狠毒的小龙虾完成签到,获得积分10
12秒前
小趴菜完成签到,获得积分10
16秒前
lcls完成签到,获得积分10
17秒前
17秒前
18秒前
尊敬太阳发布了新的文献求助10
20秒前
风中夜天完成签到 ,获得积分10
20秒前
优雅友蕊完成签到,获得积分10
21秒前
gaga完成签到,获得积分10
22秒前
西北孤傲的狼完成签到,获得积分10
23秒前
多边形完成签到 ,获得积分10
25秒前
李cc完成签到,获得积分10
27秒前
27秒前
快帮我找找完成签到,获得积分10
27秒前
xiezhuochun完成签到 ,获得积分10
28秒前
31秒前
aixiaoming0503完成签到,获得积分10
32秒前
forge完成签到,获得积分10
32秒前
33秒前
Distance完成签到,获得积分10
36秒前
蒋念寒发布了新的文献求助10
37秒前
雪雨夜心完成签到,获得积分10
41秒前
又是一年完成签到,获得积分10
42秒前
Distance发布了新的文献求助10
43秒前
李子完成签到 ,获得积分10
44秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022