Chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), are long-term pulmonary conditions that are significant causes of morbidity and mortality worldwide. These conditions are often managed with inhaled medications, delivered directly to the lungs via medical devices known as inhalers. Traditional research and development (R&D) for inhaled drugs has typically involved trial-and-error experiments. However, recent advancements in computational modeling have provided more cost-effective and efficient methods for developing inhaled drugs. This chapter provides an overview of how computational models have revolutionized the R&D of orally inhaled drugs and discusses future challenges in this area. Common computational methods in the R&D of inhaled drugs including computational fluid dynamics (CFD) modeling, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI) are first introduced. The verification and validation of these computational models are also discussed. The application of computational methods in the R&D of various inhaler types, such as nebulizers, pressurized metered-dose inhalers (pMDI), soft mist inhalers (SMI), and dry powder inhalers (DPI), as well as inhaled drug formulations, are compared and reviewed. This chapter also explores the use of computational methods in evaluating the efficacy of inhaled drugs, including the prediction of drug deposition in the human respiratory tracts, and the use of PBPK modeling to understand drug dissolution and absorption. Furthermore, the chapter reviews the role of computational methods in managing chronic respiratory diseases, highlighting the potential benefits of inhaler-based electronic monitoring devices, improvements in patient adherence, measurement of inhalation parameters, and the development of predictive models for acute exacerbations. Finally, the chapter discusses the challenges and future directions in the field of computational modeling for the R&D of orally inhaled drugs.