Artificial Intelligence and Computational Modeling in Orally Inhaled Drugs

计算机科学 人工智能 医学 药理学
作者
Renjie Li,Hao Miao,Xudong Zhou,Ruiping Zou,Zhenbo Tong
标识
DOI:10.1002/9781119987260.ch11
摘要

Chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), are long-term pulmonary conditions that are significant causes of morbidity and mortality worldwide. These conditions are often managed with inhaled medications, delivered directly to the lungs via medical devices known as inhalers. Traditional research and development (R&D) for inhaled drugs has typically involved trial-and-error experiments. However, recent advancements in computational modeling have provided more cost-effective and efficient methods for developing inhaled drugs. This chapter provides an overview of how computational models have revolutionized the R&D of orally inhaled drugs and discusses future challenges in this area. Common computational methods in the R&D of inhaled drugs including computational fluid dynamics (CFD) modeling, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI) are first introduced. The verification and validation of these computational models are also discussed. The application of computational methods in the R&D of various inhaler types, such as nebulizers, pressurized metered-dose inhalers (pMDI), soft mist inhalers (SMI), and dry powder inhalers (DPI), as well as inhaled drug formulations, are compared and reviewed. This chapter also explores the use of computational methods in evaluating the efficacy of inhaled drugs, including the prediction of drug deposition in the human respiratory tracts, and the use of PBPK modeling to understand drug dissolution and absorption. Furthermore, the chapter reviews the role of computational methods in managing chronic respiratory diseases, highlighting the potential benefits of inhaler-based electronic monitoring devices, improvements in patient adherence, measurement of inhalation parameters, and the development of predictive models for acute exacerbations. Finally, the chapter discusses the challenges and future directions in the field of computational modeling for the R&D of orally inhaled drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木雨亦潇潇完成签到,获得积分10
4秒前
香蕉觅云应助nine2652采纳,获得10
6秒前
量子星尘发布了新的文献求助10
10秒前
芳华如梦完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
土豆丝完成签到 ,获得积分10
13秒前
琦琦完成签到,获得积分10
22秒前
zzzz完成签到,获得积分20
27秒前
GEZIKU完成签到 ,获得积分10
28秒前
35秒前
42秒前
赵三岁发布了新的文献求助10
49秒前
wwb完成签到,获得积分10
52秒前
56秒前
57秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
57秒前
能干冰露完成签到,获得积分10
1分钟前
牛奶拌可乐完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
周小鱼完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
老张完成签到,获得积分10
1分钟前
1分钟前
zhugao完成签到,获得积分10
1分钟前
1分钟前
南风知我意完成签到,获得积分10
1分钟前
朴实寻琴完成签到 ,获得积分10
1分钟前
可可可爱完成签到 ,获得积分10
1分钟前
lsy完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wwb发布了新的文献求助10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022