Artificial Intelligence and Computational Modeling in Orally Inhaled Drugs

计算机科学 人工智能 医学 药理学
作者
Renjie Li,Hao Miao,Xudong Zhou,Ruiping Zou,Zhenbo Tong
标识
DOI:10.1002/9781119987260.ch11
摘要

Chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), are long-term pulmonary conditions that are significant causes of morbidity and mortality worldwide. These conditions are often managed with inhaled medications, delivered directly to the lungs via medical devices known as inhalers. Traditional research and development (R&D) for inhaled drugs has typically involved trial-and-error experiments. However, recent advancements in computational modeling have provided more cost-effective and efficient methods for developing inhaled drugs. This chapter provides an overview of how computational models have revolutionized the R&D of orally inhaled drugs and discusses future challenges in this area. Common computational methods in the R&D of inhaled drugs including computational fluid dynamics (CFD) modeling, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI) are first introduced. The verification and validation of these computational models are also discussed. The application of computational methods in the R&D of various inhaler types, such as nebulizers, pressurized metered-dose inhalers (pMDI), soft mist inhalers (SMI), and dry powder inhalers (DPI), as well as inhaled drug formulations, are compared and reviewed. This chapter also explores the use of computational methods in evaluating the efficacy of inhaled drugs, including the prediction of drug deposition in the human respiratory tracts, and the use of PBPK modeling to understand drug dissolution and absorption. Furthermore, the chapter reviews the role of computational methods in managing chronic respiratory diseases, highlighting the potential benefits of inhaler-based electronic monitoring devices, improvements in patient adherence, measurement of inhalation parameters, and the development of predictive models for acute exacerbations. Finally, the chapter discusses the challenges and future directions in the field of computational modeling for the R&D of orally inhaled drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄蛋黄发布了新的文献求助10
3秒前
aaa完成签到,获得积分10
4秒前
笨笨猪完成签到,获得积分10
6秒前
Charon完成签到,获得积分10
8秒前
QQ完成签到 ,获得积分10
10秒前
顺心的梨愁完成签到 ,获得积分10
10秒前
15秒前
jjx1005完成签到 ,获得积分10
16秒前
Akim应助黄蛋黄采纳,获得10
18秒前
yangching应助樱桃小王子采纳,获得10
18秒前
Emper发布了新的文献求助10
18秒前
push完成签到 ,获得积分10
20秒前
冰糖葫芦不加糖完成签到 ,获得积分10
28秒前
couletian完成签到 ,获得积分10
29秒前
赫连又蓝发布了新的文献求助30
30秒前
英俊的铭应助坦率雁卉采纳,获得10
31秒前
32秒前
TY完成签到 ,获得积分10
33秒前
34秒前
36秒前
黄蛋黄完成签到,获得积分10
38秒前
39秒前
Cloud驳回了Akim应助
39秒前
无尘发布了新的文献求助10
41秒前
42秒前
44秒前
坚强热狗发布了新的文献求助10
47秒前
48秒前
ljcznhy完成签到,获得积分10
49秒前
叡叡发布了新的文献求助10
51秒前
53秒前
8R60d8应助科研通管家采纳,获得10
54秒前
深情安青应助科研通管家采纳,获得10
54秒前
8R60d8应助科研通管家采纳,获得10
54秒前
领导范儿应助科研通管家采纳,获得10
54秒前
54秒前
JamesPei应助科研通管家采纳,获得10
55秒前
田様应助科研通管家采纳,获得10
55秒前
香蕉觅云应助科研通管家采纳,获得10
55秒前
所所应助科研通管家采纳,获得10
55秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129