Artificial Intelligence and Computational Modeling in Orally Inhaled Drugs

计算机科学 人工智能 医学 药理学
作者
Renjie Li,Hao Miao,Xudong Zhou,Ruiping Zou,Zhenbo Tong
标识
DOI:10.1002/9781119987260.ch11
摘要

Chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), are long-term pulmonary conditions that are significant causes of morbidity and mortality worldwide. These conditions are often managed with inhaled medications, delivered directly to the lungs via medical devices known as inhalers. Traditional research and development (R&D) for inhaled drugs has typically involved trial-and-error experiments. However, recent advancements in computational modeling have provided more cost-effective and efficient methods for developing inhaled drugs. This chapter provides an overview of how computational models have revolutionized the R&D of orally inhaled drugs and discusses future challenges in this area. Common computational methods in the R&D of inhaled drugs including computational fluid dynamics (CFD) modeling, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI) are first introduced. The verification and validation of these computational models are also discussed. The application of computational methods in the R&D of various inhaler types, such as nebulizers, pressurized metered-dose inhalers (pMDI), soft mist inhalers (SMI), and dry powder inhalers (DPI), as well as inhaled drug formulations, are compared and reviewed. This chapter also explores the use of computational methods in evaluating the efficacy of inhaled drugs, including the prediction of drug deposition in the human respiratory tracts, and the use of PBPK modeling to understand drug dissolution and absorption. Furthermore, the chapter reviews the role of computational methods in managing chronic respiratory diseases, highlighting the potential benefits of inhaler-based electronic monitoring devices, improvements in patient adherence, measurement of inhalation parameters, and the development of predictive models for acute exacerbations. Finally, the chapter discusses the challenges and future directions in the field of computational modeling for the R&D of orally inhaled drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XX完成签到,获得积分10
刚刚
淡定的忆山完成签到 ,获得积分10
刚刚
洋洋应助湛湛采纳,获得10
刚刚
小细胞的大梦想完成签到,获得积分10
1秒前
慕青应助开心人达采纳,获得10
1秒前
popo6150完成签到,获得积分10
1秒前
要减肥的chao完成签到,获得积分10
1秒前
阿会完成签到,获得积分10
1秒前
诸逍遥发布了新的文献求助10
2秒前
开元完成签到,获得积分10
3秒前
Ava应助比奇堡采纳,获得10
3秒前
能干的鞅完成签到,获得积分10
4秒前
Yu发布了新的文献求助10
4秒前
zhen应助Felix采纳,获得10
4秒前
5秒前
铅笔刀发布了新的文献求助10
5秒前
潘尼发布了新的文献求助10
5秒前
金刚大王完成签到,获得积分10
5秒前
6秒前
天天喝咖啡完成签到,获得积分10
6秒前
雪白的威完成签到,获得积分10
6秒前
Wv完成签到,获得积分10
6秒前
顺利半梦完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
还单身的寒云完成签到,获得积分10
7秒前
nothing完成签到,获得积分10
8秒前
溪夕er完成签到,获得积分10
8秒前
mogu完成签到,获得积分10
8秒前
sh33完成签到,获得积分10
8秒前
13发布了新的文献求助10
8秒前
8秒前
8秒前
黄耀完成签到,获得积分10
8秒前
戚雅柔完成签到 ,获得积分10
9秒前
善学以致用应助Yoo.采纳,获得10
9秒前
由由完成签到 ,获得积分10
9秒前
刘晓丹完成签到,获得积分10
9秒前
Derek0203完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740