Artificial Intelligence and Computational Modeling in Orally Inhaled Drugs

计算机科学 人工智能 医学 药理学
作者
Renjie Li,Hao Miao,Xudong Zhou,Ruiping Zou,Zhenbo Tong
标识
DOI:10.1002/9781119987260.ch11
摘要

Chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), are long-term pulmonary conditions that are significant causes of morbidity and mortality worldwide. These conditions are often managed with inhaled medications, delivered directly to the lungs via medical devices known as inhalers. Traditional research and development (R&D) for inhaled drugs has typically involved trial-and-error experiments. However, recent advancements in computational modeling have provided more cost-effective and efficient methods for developing inhaled drugs. This chapter provides an overview of how computational models have revolutionized the R&D of orally inhaled drugs and discusses future challenges in this area. Common computational methods in the R&D of inhaled drugs including computational fluid dynamics (CFD) modeling, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI) are first introduced. The verification and validation of these computational models are also discussed. The application of computational methods in the R&D of various inhaler types, such as nebulizers, pressurized metered-dose inhalers (pMDI), soft mist inhalers (SMI), and dry powder inhalers (DPI), as well as inhaled drug formulations, are compared and reviewed. This chapter also explores the use of computational methods in evaluating the efficacy of inhaled drugs, including the prediction of drug deposition in the human respiratory tracts, and the use of PBPK modeling to understand drug dissolution and absorption. Furthermore, the chapter reviews the role of computational methods in managing chronic respiratory diseases, highlighting the potential benefits of inhaler-based electronic monitoring devices, improvements in patient adherence, measurement of inhalation parameters, and the development of predictive models for acute exacerbations. Finally, the chapter discusses the challenges and future directions in the field of computational modeling for the R&D of orally inhaled drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助100
刚刚
dara完成签到,获得积分10
刚刚
隐形曼青应助西习采纳,获得10
1秒前
1秒前
曾经晓亦发布了新的文献求助20
1秒前
香蕉觅云应助庾稀采纳,获得10
2秒前
岁月轮回发布了新的文献求助10
2秒前
3秒前
3秒前
练习时长两年半应助香菜采纳,获得10
4秒前
1111发布了新的文献求助10
4秒前
6秒前
CipherSage应助澡雪采纳,获得10
7秒前
YOLO发布了新的文献求助10
7秒前
敏感安柏关注了科研通微信公众号
7秒前
所所应助奥暖将采纳,获得10
8秒前
8秒前
cc完成签到,获得积分10
9秒前
10秒前
LittleTT发布了新的文献求助10
10秒前
10秒前
10秒前
所所应助太渊采纳,获得10
11秒前
迷路铸海完成签到,获得积分20
12秒前
cc发布了新的文献求助10
12秒前
lyy关注了科研通微信公众号
13秒前
鱼贝贝完成签到 ,获得积分10
13秒前
小蘑菇应助zyw采纳,获得10
13秒前
linkman发布了新的文献求助10
13秒前
Ava应助岁月轮回采纳,获得10
15秒前
15秒前
刻苦海露发布了新的文献求助30
16秒前
17秒前
Henry发布了新的文献求助30
18秒前
毛哥看文献完成签到 ,获得积分10
18秒前
Dream点壹完成签到,获得积分10
20秒前
平淡南松完成签到,获得积分10
21秒前
狗狗发布了新的文献求助10
22秒前
22秒前
太渊发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975871
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201502
捐赠科研通 3256611
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877552
科研通“疑难数据库(出版商)”最低求助积分说明 806430