Artificial Intelligence and Computational Modeling in Orally Inhaled Drugs

计算机科学 人工智能 医学 药理学
作者
Renjie Li,Hao Miao,Xudong Zhou,Ruiping Zou,Zhenbo Tong
标识
DOI:10.1002/9781119987260.ch11
摘要

Chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD), are long-term pulmonary conditions that are significant causes of morbidity and mortality worldwide. These conditions are often managed with inhaled medications, delivered directly to the lungs via medical devices known as inhalers. Traditional research and development (R&D) for inhaled drugs has typically involved trial-and-error experiments. However, recent advancements in computational modeling have provided more cost-effective and efficient methods for developing inhaled drugs. This chapter provides an overview of how computational models have revolutionized the R&D of orally inhaled drugs and discusses future challenges in this area. Common computational methods in the R&D of inhaled drugs including computational fluid dynamics (CFD) modeling, physiologically based pharmacokinetic (PBPK) modeling, and artificial intelligence (AI) are first introduced. The verification and validation of these computational models are also discussed. The application of computational methods in the R&D of various inhaler types, such as nebulizers, pressurized metered-dose inhalers (pMDI), soft mist inhalers (SMI), and dry powder inhalers (DPI), as well as inhaled drug formulations, are compared and reviewed. This chapter also explores the use of computational methods in evaluating the efficacy of inhaled drugs, including the prediction of drug deposition in the human respiratory tracts, and the use of PBPK modeling to understand drug dissolution and absorption. Furthermore, the chapter reviews the role of computational methods in managing chronic respiratory diseases, highlighting the potential benefits of inhaler-based electronic monitoring devices, improvements in patient adherence, measurement of inhalation parameters, and the development of predictive models for acute exacerbations. Finally, the chapter discusses the challenges and future directions in the field of computational modeling for the R&D of orally inhaled drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FUsir完成签到,获得积分10
刚刚
矮小的凝冬完成签到,获得积分10
刚刚
刚刚
FashionBoy应助XiaoXiao采纳,获得10
刚刚
优雅的书兰完成签到,获得积分10
3秒前
Anan发布了新的文献求助10
3秒前
乐乐应助肉肉采纳,获得10
3秒前
爆米花应助Jeri采纳,获得10
4秒前
lili888完成签到,获得积分10
4秒前
松弛的小刀完成签到,获得积分10
4秒前
铅笔丶完成签到,获得积分10
5秒前
abrr完成签到,获得积分10
5秒前
小高同志发布了新的文献求助10
5秒前
Hilda007发布了新的文献求助30
5秒前
彭洪凯完成签到,获得积分10
5秒前
yyyzzz完成签到,获得积分10
5秒前
希望天下0贩的0应助XYF采纳,获得10
6秒前
赘婿应助wait采纳,获得10
7秒前
小南瓜完成签到,获得积分10
7秒前
han完成签到,获得积分10
8秒前
小南瓜发布了新的文献求助10
10秒前
11秒前
11秒前
orixero应助杨亚轩采纳,获得10
11秒前
andrele发布了新的文献求助10
12秒前
田様应助昌莆采纳,获得10
13秒前
领导范儿应助Mathletics采纳,获得10
13秒前
13秒前
何书易发布了新的文献求助20
13秒前
白昼星辰完成签到,获得积分10
14秒前
15秒前
沉默丹亦完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
李卓发布了新的文献求助10
17秒前
科研通AI6应助Ginkgo采纳,获得10
17秒前
mikasa发布了新的文献求助10
18秒前
华仔应助文静幼荷采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393870
求助须知:如何正确求助?哪些是违规求助? 4515281
关于积分的说明 14053296
捐赠科研通 4426429
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529