Deep learning in cropland field identification: A review

鉴定(生物学) 领域(数学) 深度学习 环境科学 人工智能 计算机科学 遥感 工程类 机器学习 地质学 数学 生物 植物 纯数学
作者
Fan Xu,Xiaochuang Yao,Kangxin Zhang,Hao Yang,Quanlong Feng,Ying Li,Shuai Yan,Bingbo Gao,Shaoshuai Li,Jianyu Yang,Chao Zhang,Yahui Lv,Dehai Zhu,Sijing Ye
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:222: 109042-109042 被引量:6
标识
DOI:10.1016/j.compag.2024.109042
摘要

The cropland field (CF) is the basic unit of agricultural production and a key element of precision agriculture. High-precision delineations of CF boundaries provide a reliable data foundation for field labor and mechanized operations. In recent years, with the dual advancements in remote sensing satellite technology and artificial intelligence, enabling the extraction of CF information on a wide scale and with high precision, research on CF identification based on deep learning (DL) has emerged as a highly esteemed direction in this field. To comprehend the developmental trends within this field, this study employs bibliometric and content analysis methods to comprehensively review and analyze DL research in the field of CF identification from various perspectives. Initially, 93 relevant literature pieces were retrieved and screened from two databases, the Web of Science Core Collection and the Chinese Science Citation Database, for review. The previous studies underwent quantitative analysis using bibliometric software across five dimensions: publication year, literature type and publication journal, country, author, and keyword. Subsequently, we analyze the current status and trends of employing DL in the field of CF identification from four perspectives: remote sensing data sources, DL models, types of CF extraction results, and sample datasets. Simultaneously, we combed through current publicly available sample datasets and data products that can be referenced to produce sample datasets for CFs. Finally, the challenges and future research focus of DL-based CF identification research are discussed. This paper provides both qualitative and quantitative analyses of research on DL-based CF identification, elucidating the current status, development trends, challenges, and future research focuses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助zyy采纳,获得10
1秒前
允怡发布了新的文献求助10
2秒前
2秒前
天天快乐应助宏hong采纳,获得10
3秒前
Hello应助1313131采纳,获得10
4秒前
隐形曼青应助小火苗采纳,获得10
4秒前
4秒前
认真思真发布了新的文献求助30
5秒前
5秒前
阿林琳琳发布了新的文献求助10
5秒前
仁爱柠檬完成签到,获得积分10
6秒前
淡定吃吃完成签到,获得积分10
6秒前
要减肥的乐双完成签到,获得积分10
7秒前
笑眯眯完成签到,获得积分10
7秒前
无辜鞋子发布了新的文献求助10
7秒前
晚言完成签到 ,获得积分10
8秒前
无则灵完成签到 ,获得积分10
8秒前
Sekaiwa完成签到,获得积分10
8秒前
汤圆关注了科研通微信公众号
9秒前
FRANKFANG发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助30
9秒前
yingzaifeixiang完成签到 ,获得积分10
9秒前
magneto完成签到,获得积分10
11秒前
Yanzy完成签到,获得积分10
11秒前
12秒前
所所应助hyh采纳,获得10
12秒前
小马甲应助飞的更高采纳,获得10
13秒前
13秒前
小马甲应助认真思真采纳,获得30
13秒前
14秒前
14秒前
14秒前
从容雅柏发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
17秒前
minhduc完成签到,获得积分10
17秒前
dongyu发布了新的文献求助10
18秒前
19秒前
顾矜应助wangwenzhe采纳,获得30
19秒前
QQ1122发布了新的文献求助10
19秒前
斯文尔白完成签到 ,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771