A weighted integration method based on graph representation learning for drug repositioning

计算机科学 药物重新定位 图形 代表(政治) 人工智能 水准点(测量) 数据挖掘 相似性(几何) 机器学习 药品 理论计算机科学 医学 精神科 地理 法学 大地测量学 图像(数学) 政治 政治学
作者
Haojie Lian,Pengju Ding,Chao Yu,Xinyu Zhang,Guozhu Liu,Bin Yu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:161: 111763-111763
标识
DOI:10.1016/j.asoc.2024.111763
摘要

The time-consuming and expensive nature of traditional drug discovery necessitates a cost-effective approach to facilitate disease treatment. Drug repositioning, discovering innovative applications for existing drugs, has become a viable strategy that is essential for facilitating drug discovery due to its cost-effectiveness and shorter development cycle. While existing methods assume neighbors of the target node are independent, they neglect potential neighbor interaction features. We propose a weighted integration method based on graph representation learning for drug repositioning (called WIGRL) to comprehensively consider neighborhood features and neighbor interaction features, with encoders designed for similarity networks of drugs and diseases, respectively, and a network of associations between the two. Firstly, WIGRL utilizes graph convolutional network modules to obtain the neighborhood properties of nodes in similar networks. Secondly, neighbor interaction properties in similar networks are captured by graph attention network modules. Next, projection encoders are introduced to represent the association features in the association network. Finally, a more representative, unified vector is formed by simultaneously fusing information from diverse networks. After that, the decoder receives this vector to predict associations. The findings of the experiments conducted on the Fdataset, Cdataset, and LRSSL benchmark datasets demonstrate that WIGRL outperforms the existing SOTA approaches in identifying the most real positive associations and obtains the most outstanding average metrics (AUROC of 0.9331 and AUPR of 0.5654). Notably, in the case study, WIGRL discovered new associations not recorded in the dataset, validated by clinical trials and authoritative sources. Additionally, it identified novel therapeutic candidates for two neurodegenerative diseases. The source codes and datasets are available at https://github.com/YuBinLab-QUST/WIGRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卓涵柏发布了新的文献求助10
1秒前
欢呼书包发布了新的文献求助10
3秒前
浨归完成签到,获得积分10
3秒前
4秒前
4秒前
Tine发布了新的文献求助10
5秒前
wanci应助ererrrr采纳,获得10
5秒前
wangsiyuan发布了新的文献求助10
5秒前
庄冬丽发布了新的文献求助10
6秒前
李咸咸123完成签到,获得积分10
6秒前
6秒前
小一完成签到,获得积分10
6秒前
俏皮的冰姬完成签到 ,获得积分10
6秒前
所所应助fangy34采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
情怀应助Cici采纳,获得10
9秒前
楠LEE发布了新的文献求助10
10秒前
11秒前
卓涵柏完成签到,获得积分10
11秒前
ZZC10完成签到,获得积分10
12秒前
Hello应助Suyi采纳,获得10
12秒前
宓广缘完成签到 ,获得积分10
13秒前
卓熊关注了科研通微信公众号
14秒前
老迟到的冬萱完成签到,获得积分10
14秒前
星辰大海应助阳光蛋挞采纳,获得10
14秒前
14秒前
墨菲特发布了新的文献求助10
14秒前
丽丽完成签到,获得积分10
16秒前
端庄的煎蛋完成签到,获得积分0
16秒前
16秒前
Lucas应助拉长的人雄采纳,获得10
18秒前
19秒前
20秒前
20秒前
庄冬丽完成签到,获得积分10
20秒前
一一发布了新的文献求助10
20秒前
Hello应助肉肉抱大腿采纳,获得10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970004
求助须知:如何正确求助?哪些是违规求助? 3514701
关于积分的说明 11175468
捐赠科研通 3250051
什么是DOI,文献DOI怎么找? 1795187
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804925