A weighted integration method based on graph representation learning for drug repositioning

计算机科学 药物重新定位 图形 代表(政治) 人工智能 机器学习 药品 理论计算机科学 医学 药理学 政治 政治学 法学
作者
Haojie Lian,Pengju Ding,Chao Yu,Xinyu Zhang,Guozhu Liu,Bin Yu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:161: 111763-111763
标识
DOI:10.1016/j.asoc.2024.111763
摘要

The time-consuming and expensive nature of traditional drug discovery necessitates a cost-effective approach to facilitate disease treatment. Drug repositioning, discovering innovative applications for existing drugs, has become a viable strategy that is essential for facilitating drug discovery due to its cost-effectiveness and shorter development cycle. While existing methods assume neighbors of the target node are independent, they neglect potential neighbor interaction features. We propose a weighted integration method based on graph representation learning for drug repositioning (called WIGRL) to comprehensively consider neighborhood features and neighbor interaction features, with encoders designed for similarity networks of drugs and diseases, respectively, and a network of associations between the two. Firstly, WIGRL utilizes graph convolutional network modules to obtain the neighborhood properties of nodes in similar networks. Secondly, neighbor interaction properties in similar networks are captured by graph attention network modules. Next, projection encoders are introduced to represent the association features in the association network. Finally, a more representative, unified vector is formed by simultaneously fusing information from diverse networks. After that, the decoder receives this vector to predict associations. The findings of the experiments conducted on the Fdataset, Cdataset, and LRSSL benchmark datasets demonstrate that WIGRL outperforms the existing SOTA approaches in identifying the most real positive associations and obtains the most outstanding average metrics (AUROC of 0.9331 and AUPR of 0.5654). Notably, in the case study, WIGRL discovered new associations not recorded in the dataset, validated by clinical trials and authoritative sources. Additionally, it identified novel therapeutic candidates for two neurodegenerative diseases. The source codes and datasets are available at https://github.com/YuBinLab-QUST/WIGRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助IAMXC采纳,获得100
刚刚
xzh发布了新的文献求助10
1秒前
4秒前
mokano发布了新的文献求助10
4秒前
笑点低胡萝卜完成签到,获得积分10
4秒前
ASBDJ发布了新的文献求助10
4秒前
杨羕发布了新的文献求助30
5秒前
6秒前
7秒前
忧伤的彩虹完成签到,获得积分10
7秒前
赵文斌发布了新的文献求助30
8秒前
visible完成签到,获得积分10
8秒前
Vincent完成签到,获得积分10
8秒前
qphys完成签到,获得积分10
9秒前
ayu发布了新的文献求助10
9秒前
初夏完成签到 ,获得积分10
9秒前
上官若男应助xuaotian采纳,获得10
9秒前
楠楠发布了新的文献求助10
9秒前
9秒前
9秒前
Renhong发布了新的文献求助10
10秒前
共享精神应助Cc采纳,获得10
11秒前
华仔应助CynthiaaaCat采纳,获得50
11秒前
11秒前
百里新瑶发布了新的文献求助10
13秒前
LLLLL发布了新的文献求助10
13秒前
zzzzoa完成签到,获得积分10
13秒前
14秒前
搜集达人应助背后玉米采纳,获得10
14秒前
李所当然完成签到,获得积分10
14秒前
14秒前
小顾发布了新的文献求助10
15秒前
共享精神应助积极问晴采纳,获得10
16秒前
爱喝面汤的tt完成签到,获得积分10
17秒前
菠菜应助萧水白采纳,获得100
17秒前
17秒前
17秒前
17秒前
xcx发布了新的文献求助10
18秒前
胖胖龙发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147820
求助须知:如何正确求助?哪些是违规求助? 2798873
关于积分的说明 7832037
捐赠科研通 2455841
什么是DOI,文献DOI怎么找? 1306979
科研通“疑难数据库(出版商)”最低求助积分说明 627957
版权声明 601587