清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Beyond Static Obstacles: Integrating Kalman Filter with Reinforcement Learning for Drone Navigation

无人机 强化学习 卡尔曼滤波器 计算机科学 扩展卡尔曼滤波器 人工智能 计算机视觉 人机交互 航空学 工程类 遗传学 生物
作者
Francesco Marino,Giorgio Guglieri
出处
期刊:Aerospace [MDPI AG]
卷期号:11 (5): 395-395 被引量:4
标识
DOI:10.3390/aerospace11050395
摘要

Autonomous drones offer immense potential in dynamic environments, but their navigation systems often struggle with moving obstacles. This paper presents a novel approach for drone trajectory planning in such scenarios, combining the Interactive Multiple Model (IMM) Kalman filter with Proximal Policy Optimization (PPO) reinforcement learning (RL). The IMM Kalman filter addresses state estimation challenges by modeling the potential motion patterns of moving objects. This enables accurate prediction of future object positions, even in uncertain environments. The PPO reinforcement learning algorithm then leverages these predictions to optimize the drone’s real-time trajectory. Additionally, the capability of PPO to work with continuous action spaces makes it ideal for the smooth control adjustments required for safe navigation. Our simulation results demonstrate the effectiveness of this combined approach. The drone successfully navigates complex dynamic environments, achieving collision avoidance and goal-oriented behavior. This work highlights the potential of integrating advanced state estimation and reinforcement learning techniques to enhance autonomous drone capabilities in unpredictable settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
31秒前
50秒前
1分钟前
1分钟前
小小虾完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助李小猫采纳,获得10
1分钟前
雨rain完成签到 ,获得积分10
1分钟前
1分钟前
李小猫发布了新的文献求助10
1分钟前
2分钟前
乐乐应助另一种蓝色采纳,获得10
2分钟前
thl发布了新的文献求助10
2分钟前
2分钟前
切尔顿发布了新的文献求助10
2分钟前
泽锦臻完成签到,获得积分10
2分钟前
3分钟前
3分钟前
拾玖发布了新的文献求助10
3分钟前
zzmm发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
小盼虫发布了新的文献求助10
3分钟前
3分钟前
3分钟前
小蘑菇应助眯眯眼的山柳采纳,获得10
3分钟前
丘比特应助另一种蓝色采纳,获得10
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
叶子完成签到 ,获得积分0
4分钟前
Levent完成签到,获得积分10
4分钟前
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
xiawanren00完成签到,获得积分10
4分钟前
4分钟前
小青加油发布了新的文献求助10
4分钟前
淡然绝山发布了新的文献求助10
4分钟前
4分钟前
小青加油完成签到,获得积分10
4分钟前
Petrichor完成签到,获得积分10
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5747039
求助须知:如何正确求助?哪些是违规求助? 5441746
关于积分的说明 15356150
捐赠科研通 4887004
什么是DOI,文献DOI怎么找? 2627560
邀请新用户注册赠送积分活动 1575975
关于科研通互助平台的介绍 1532815