Hyper: A High-Performance and Memory-Efficient Learned Index via Hybrid Construction

计算机科学 架空(工程) 线程(计算) 索引(排版) 并发 内存管理 分布式计算 覆盖 操作系统 万维网
作者
Shunkang Zhang,Ji Qi,Xin Yao,André Brinkmann
标识
DOI:10.1145/3654948
摘要

Learned indexes use machine learning techniques to improve index construction. However, they often face a fundamental trade-off between performance and memory consumption, especially in dynamic environments with frequent insert and delete operations. This trade-off stems from the construction approaches used in learned indexes: The top-down approach increases performance at the cost of significant memory overhead, while the bottom-up approach focuses on memory efficiency but introduces performance issues due to prediction errors. % A unified solution that simultaneously optimizes performance and memory consumption in dynamic data management scenarios is therefore highly desirable. We propose Hyper, a highly efficient learned index with a novel two-phase hybrid construction approach. Our approach combines bottom-up construction for leaf nodes with top-down construction for inner nodes to achieve an optimal balance between performance and memory consumption. Hyper effectively handles concurrent writes and structure adjustments without sacrificing query performance. We evaluated Hyper on both simple and complex real-world datasets and compared it to seven state-of-the-art learned indexes and several traditional data structures for dynamic workloads. The evaluation results show that Hyper achieves a remarkable performance boost of up to 3.75× with significantly reduced index memory consumption of up to 1610× in the single-thread evaluation. In high concurrency scenarios, Hyper even achieves improvements up to 5.73×, 3.72×, and 3.99× in read-only, read-write, and write-only workloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAYA发布了新的文献求助10
刚刚
xun应助Yyyyy采纳,获得10
刚刚
善学以致用应助Yyyyy采纳,获得10
刚刚
善学以致用应助zl采纳,获得10
2秒前
我是老大应助heymax采纳,获得10
2秒前
2秒前
zzf完成签到 ,获得积分10
2秒前
聪慧航空完成签到,获得积分10
3秒前
所所应助烂漫盼曼采纳,获得10
4秒前
4秒前
麻麻发布了新的文献求助20
5秒前
科目三应助Jyhad采纳,获得10
5秒前
5秒前
哈喽小雪完成签到,获得积分10
6秒前
要文献啊完成签到 ,获得积分10
6秒前
6秒前
稳重盼夏发布了新的文献求助10
7秒前
立军发布了新的文献求助30
7秒前
小秦完成签到,获得积分10
8秒前
jy完成签到 ,获得积分10
8秒前
9秒前
Menloar发布了新的文献求助10
9秒前
稳稳稳发布了新的文献求助10
9秒前
内向的小凡完成签到,获得积分0
9秒前
wmszhd发布了新的文献求助10
9秒前
传奇3应助听话当小当采纳,获得10
10秒前
1123完成签到,获得积分10
10秒前
想吃芝士荔枝烤鱼完成签到,获得积分10
10秒前
11秒前
JABBA完成签到,获得积分10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
云淡风清完成签到 ,获得积分10
16秒前
aiid完成签到,获得积分10
18秒前
20秒前
z_zq完成签到,获得积分10
20秒前
非言墨语发布了新的文献求助10
21秒前
21秒前
一生总发布了新的文献求助30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586460
求助须知:如何正确求助?哪些是违规求助? 4002855
关于积分的说明 12391328
捐赠科研通 3679014
什么是DOI,文献DOI怎么找? 2027779
邀请新用户注册赠送积分活动 1061289
科研通“疑难数据库(出版商)”最低求助积分说明 947659