Hyper: A High-Performance and Memory-Efficient Learned Index via Hybrid Construction

计算机科学 架空(工程) 线程(计算) 索引(排版) 并发 内存管理 分布式计算 覆盖 操作系统 万维网
作者
Shunkang Zhang,Ji Qi,Xin Yao,André Brinkmann
标识
DOI:10.1145/3654948
摘要

Learned indexes use machine learning techniques to improve index construction. However, they often face a fundamental trade-off between performance and memory consumption, especially in dynamic environments with frequent insert and delete operations. This trade-off stems from the construction approaches used in learned indexes: The top-down approach increases performance at the cost of significant memory overhead, while the bottom-up approach focuses on memory efficiency but introduces performance issues due to prediction errors. % A unified solution that simultaneously optimizes performance and memory consumption in dynamic data management scenarios is therefore highly desirable. We propose Hyper, a highly efficient learned index with a novel two-phase hybrid construction approach. Our approach combines bottom-up construction for leaf nodes with top-down construction for inner nodes to achieve an optimal balance between performance and memory consumption. Hyper effectively handles concurrent writes and structure adjustments without sacrificing query performance. We evaluated Hyper on both simple and complex real-world datasets and compared it to seven state-of-the-art learned indexes and several traditional data structures for dynamic workloads. The evaluation results show that Hyper achieves a remarkable performance boost of up to 3.75× with significantly reduced index memory consumption of up to 1610× in the single-thread evaluation. In high concurrency scenarios, Hyper even achieves improvements up to 5.73×, 3.72×, and 3.99× in read-only, read-write, and write-only workloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
jiejie完成签到,获得积分10
5秒前
天空之下发布了新的文献求助10
6秒前
7秒前
RC_Wang发布了新的文献求助10
8秒前
8秒前
Zz发布了新的文献求助20
8秒前
满意雨雪发布了新的文献求助10
9秒前
11秒前
李健的小迷弟应助hyw采纳,获得10
11秒前
乌卡卡发布了新的文献求助10
13秒前
13秒前
REBECCA完成签到,获得积分10
13秒前
方圆几里完成签到,获得积分10
14秒前
李爱国应助芭蕾恰恰舞采纳,获得10
15秒前
16秒前
夜曲发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
liao_duoduo完成签到,获得积分10
21秒前
伊丽莎白古井完成签到 ,获得积分10
21秒前
无名完成签到,获得积分10
24秒前
自信的秋灵完成签到,获得积分10
24秒前
26秒前
hyw发布了新的文献求助10
27秒前
英俊的铭应助天空之下采纳,获得10
31秒前
夜曲完成签到,获得积分10
32秒前
大萨达侧分带完成签到,获得积分20
36秒前
38秒前
38秒前
38秒前
39秒前
39秒前
量子星尘发布了新的文献求助10
39秒前
sasasas完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419605
求助须知:如何正确求助?哪些是违规求助? 4534853
关于积分的说明 14147089
捐赠科研通 4451498
什么是DOI,文献DOI怎么找? 2441760
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410617