无定形磷酸钙
再矿化
材料科学
复合数
钙
生物矿化
基质(化学分析)
无定形固体
磷酸盐
硬组织
生物物理学
化学工程
复合材料
牙科
生物化学
搪瓷漆
结晶学
冶金
化学
生物
医学
工程类
作者
Yanyun Pang,Chengyu Fu,Daixing Zhang,Min Li,Xinye Zhou,Yingtao Gao,Kaiye Lin,Bowen Hu,Kai Zhang,Qing Cai,Peng Yang,Yongchun Liu,Xu Zhang
标识
DOI:10.1002/adfm.202403233
摘要
Abstract Numerous remineralizing coatings aim to prevent or treat early enamel lesions and occlude exposed dentinal tubules (DTs). Nevertheless, the pace of remineralization is inadequate, and the mechanical robustness of the newly established mineral layer fails to match the inherent strength. In this study, a biomimetic mineralization strategy aimed at replicating key events in biological mineralization, specifically focusing on the organic–inorganic composite matrix, is proposed. The material utilizes Tris(2‐carboxyethyl)phosphine (TCEP), which serves a dual role: stabilized amorphous calcium phosphate (ACP) (ACP@TCEP) nanoparticles as its inorganic component, and catalyzing the cleavage of intramolecular disulfide bonds in poly(ethylene glycol) (PEG) grafted lysozyme (lyso‐PEG) to facilitate the formation of an amyloid‐like protein matrix composite with ACP (ACP@lyso‐PEG nanocomplexes). ACP@lyso‐PEG nanocomplexes can rapidly and efficiently form an enamel‐like remineralization layer on the surface of damaged dental hard tissue, reaching ≈4.205 µm thickness after 3 days of acid‐etched enamel. Furthermore, achieving a depth of DTs occlusion exceeding 60 µm after 5 days, using a simple immersion process. The resulting mineralized layer exhibits mechanical strength comparable to natural teeth. This study introduces a conceptual biomimetic mineralization strategy for effective enamel repair or DTs occlusion in clinical practices, and offers potential insights into the mechanisms of biomineral formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI