已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leak detection for natural gas gathering pipelines under corrupted data via assembling twin robust autoencoders

泄漏 检漏 气体泄漏 管道运输 天然气 计算机科学 人工智能 法律工程学 工程类 化学 机械工程 环境工程 有机化学 废物管理
作者
Hao Zhang,Zhonglin Zuo,Zheng Li,Li Ma,Shan Liang,Qingguo Lü,Hongyu Zhou
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:188: 492-513 被引量:4
标识
DOI:10.1016/j.psep.2024.05.112
摘要

Timely leak detection is vital to guarantee the safe and reliable operation of natural gas gathering pipelines, and the data-driven methods become a prospective tool with their widespread installation of sensors. However, these methods face several challenges such as the corrupted normal data, deficient representations learning and their insufficient utilization, low identification accuracy induced by situation without labeled leak data. Nevertheless, previous approaches mostly focused on addressing only one or two of these challenges. To collaboratively solve the above challenges, this paper proposes an unsupervised leak detection method based on twin robust autoencoders (T-RAEs) for natural gas gathering pipelines. First, a fresh robust autoencoders (RAEs) approach is developed to deal with various outliers of the corrupted normal data for multivariate time series so as to learn distinct latent representations. Next, based on the developed RAEs approach, an unsupervised T-RAEs framework is presented to jointly build the normal models of given pipelines, which considers not only the learning of diverse dependency patterns but also the dispose of various outliers. Specifically, the robust long short-term memory autoencoder (R-LSTM-AE) is employed to discover long-term dependency patterns while coping with the unstructured outliers, and the robust one-dimensional convolutional autoencoder (R-1D-CAE) is utilized to capture the short-term dependency patterns while managing with the structured outliers. Unlike the reconstruction errors of R-LSTM-AE in input space, and the errors for R-1D-CAE are computed in both input and hidden spaces to fully exploit its learned hierarchical information. Then, an integration strategy is put forward to integrate the obtained reconstruction errors of T-RAEs for the calculation of their global leak scores. Afterward, to scale the diverse magnitudes of integrated errors and eliminate their correlations induced via correlated neurons across layers, the minimum covariance determinant (MCD) method is employed as a robust normalized aggregation method to aggregate these errors along the pathway. Finally, the efficacy of the proposed leak detection method is verified by experiment results on real-world datasets obtained from natural gas gathering pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanyueyue应助三井库里采纳,获得10
1秒前
allen完成签到,获得积分10
2秒前
赫绮琴发布了新的文献求助10
4秒前
FashionBoy应助111111111采纳,获得10
5秒前
wanci应助Arui采纳,获得10
5秒前
6秒前
赫绮琴完成签到,获得积分10
12秒前
哈比人linling完成签到,获得积分10
12秒前
多发paper啊完成签到,获得积分10
13秒前
14秒前
15秒前
念初发布了新的文献求助10
17秒前
19秒前
Arui发布了新的文献求助10
20秒前
几酝发布了新的文献求助10
22秒前
六年完成签到,获得积分20
22秒前
顾矜应助miles采纳,获得10
23秒前
27秒前
Alex应助谈理想采纳,获得20
27秒前
aowulan完成签到 ,获得积分10
28秒前
赘婿应助立军采纳,获得100
29秒前
大力完成签到 ,获得积分10
30秒前
orixero应助念初采纳,获得10
36秒前
恋雅颖月应助谨慎雪碧采纳,获得10
42秒前
47秒前
48秒前
hhhi发布了新的文献求助10
50秒前
leo完成签到,获得积分10
50秒前
orixero应助科研通管家采纳,获得10
50秒前
彭于晏应助科研通管家采纳,获得10
50秒前
乐乐应助科研通管家采纳,获得10
50秒前
乐乐应助科研通管家采纳,获得10
50秒前
猪猪hero应助科研通管家采纳,获得10
50秒前
50秒前
leo发布了新的文献求助10
53秒前
CanadaPaoKing完成签到 ,获得积分10
53秒前
ctomit完成签到,获得积分10
55秒前
Lucas应助Trtr7985采纳,获得10
57秒前
Tian_lanlan完成签到,获得积分10
57秒前
rui520完成签到 ,获得积分10
59秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989918
求助须知:如何正确求助?哪些是违规求助? 3532013
关于积分的说明 11255831
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216