亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leak detection for natural gas gathering pipelines under corrupted data via assembling twin robust autoencoders

泄漏 检漏 气体泄漏 管道运输 天然气 计算机科学 人工智能 法律工程学 工程类 化学 机械工程 环境工程 有机化学 废物管理
作者
Hao Zhang,Zhonglin Zuo,Zheng Li,Li Ma,Shan Liang,Qingguo Lü,Hongyu Zhou
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:188: 492-513 被引量:4
标识
DOI:10.1016/j.psep.2024.05.112
摘要

Timely leak detection is vital to guarantee the safe and reliable operation of natural gas gathering pipelines, and the data-driven methods become a prospective tool with their widespread installation of sensors. However, these methods face several challenges such as the corrupted normal data, deficient representations learning and their insufficient utilization, low identification accuracy induced by situation without labeled leak data. Nevertheless, previous approaches mostly focused on addressing only one or two of these challenges. To collaboratively solve the above challenges, this paper proposes an unsupervised leak detection method based on twin robust autoencoders (T-RAEs) for natural gas gathering pipelines. First, a fresh robust autoencoders (RAEs) approach is developed to deal with various outliers of the corrupted normal data for multivariate time series so as to learn distinct latent representations. Next, based on the developed RAEs approach, an unsupervised T-RAEs framework is presented to jointly build the normal models of given pipelines, which considers not only the learning of diverse dependency patterns but also the dispose of various outliers. Specifically, the robust long short-term memory autoencoder (R-LSTM-AE) is employed to discover long-term dependency patterns while coping with the unstructured outliers, and the robust one-dimensional convolutional autoencoder (R-1D-CAE) is utilized to capture the short-term dependency patterns while managing with the structured outliers. Unlike the reconstruction errors of R-LSTM-AE in input space, and the errors for R-1D-CAE are computed in both input and hidden spaces to fully exploit its learned hierarchical information. Then, an integration strategy is put forward to integrate the obtained reconstruction errors of T-RAEs for the calculation of their global leak scores. Afterward, to scale the diverse magnitudes of integrated errors and eliminate their correlations induced via correlated neurons across layers, the minimum covariance determinant (MCD) method is employed as a robust normalized aggregation method to aggregate these errors along the pathway. Finally, the efficacy of the proposed leak detection method is verified by experiment results on real-world datasets obtained from natural gas gathering pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丁元英完成签到,获得积分10
1秒前
1秒前
5秒前
Aqib发布了新的文献求助10
8秒前
陈苗完成签到,获得积分20
9秒前
果果发布了新的文献求助10
9秒前
天天快乐应助董可以采纳,获得10
20秒前
wanci应助Aqib采纳,获得10
20秒前
怕孤独的孤萍完成签到 ,获得积分10
25秒前
cheng完成签到 ,获得积分10
33秒前
39秒前
辉哥完成签到,获得积分10
40秒前
46秒前
LMY完成签到 ,获得积分10
54秒前
1分钟前
PEITON发布了新的文献求助10
1分钟前
1分钟前
lenon发布了新的文献求助10
1分钟前
半夏完成签到 ,获得积分10
1分钟前
1分钟前
董可以发布了新的文献求助10
1分钟前
1分钟前
miracle完成签到 ,获得积分10
1分钟前
sss发布了新的文献求助10
1分钟前
华桦子完成签到 ,获得积分10
1分钟前
凌灵翎完成签到,获得积分10
1分钟前
lenon完成签到,获得积分10
1分钟前
思源应助sss采纳,获得10
2分钟前
2分钟前
2分钟前
欣喜的以丹完成签到,获得积分10
2分钟前
一D发布了新的文献求助10
2分钟前
muhum完成签到 ,获得积分10
2分钟前
实验大牛完成签到,获得积分10
2分钟前
852应助scholar丨崔采纳,获得10
2分钟前
2分钟前
一D完成签到,获得积分10
2分钟前
儒雅致远发布了新的文献求助10
2分钟前
YiPeng完成签到,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990022
求助须知:如何正确求助?哪些是违规求助? 3532092
关于积分的说明 11256327
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805140
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228