Investigating the influence of streetscape environmental characteristics on pedestrian crashes at intersections using street view images and explainable machine learning

行人 运输工程 计算机科学 人工智能 工程类
作者
Han Yue
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:205: 107693-107693
标识
DOI:10.1016/j.aap.2024.107693
摘要

Examining the relationship between streetscape features and road traffic accidents is pivotal for enhancing roadway safety. While previous studies have primarily focused on the influence of street design characteristics, sociodemographic features, and land use features on crash occurrence, the impact of streetscape features on pedestrian crashes has not been thoroughly investigated. Furthermore, while machine learning models demonstrate high accuracy in prediction and are increasingly utilized in traffic safety research, understanding the prediction results poses challenges. To address these gaps, this study extracts streetscape environment characteristics from street view images (SVIs) using a combination of semantic segmentation and object detection deep learning networks. These characteristics are then incorporated into the eXtreme Gradient Boosting (XGBoost) algorithm, along with a set of control variables, to model the occurrence of pedestrian crashes at intersections. Subsequently, the SHapley Additive exPlanations (SHAP) method is integrated with XGBoost to establish an interpretable framework for exploring the association between pedestrian crash occurrence and the surrounding streetscape built environment. The results are interpreted from global, local, and regional perspectives. The findings indicate that, from a global perspective, traffic volume and commercial land use are significant contributors to pedestrian-vehicle collisions at intersections, while road, person, and vehicle elements extracted from SVIs are associated with higher risks of pedestrian crash onset. At a local level, the XGBoost-SHAP framework enables quantification of features' local contributions for individual intersections, revealing spatial heterogeneity in factors influencing pedestrian crashes. From a regional perspective, similar intersections can be grouped to define geographical regions, facilitating the formulation of spatially responsive strategies for distinct regions to reduce traffic accidents. This approach can potentially enhance the quality and accuracy of local policy making. These findings underscore the underlying relationship between streetscape-level environmental characteristics and vehicle-pedestrian crashes. The integration of SVIs and deep learning techniques offers a visually descriptive portrayal of the streetscape environment at locations where traffic crashes occur at eye level. The proposed framework not only achieves excellent prediction performance but also enhances understanding of traffic crash occurrences, offering guidance for optimizing traffic accident prevention and treatment programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的黄豆豆完成签到,获得积分20
刚刚
冬嘉完成签到,获得积分10
刚刚
天天快乐应助www152采纳,获得10
刚刚
芝麻花开发布了新的文献求助10
刚刚
松思完成签到,获得积分10
1秒前
小小li完成签到 ,获得积分10
2秒前
2秒前
碎星发布了新的文献求助20
2秒前
4秒前
swordlee发布了新的文献求助10
4秒前
书婷啊完成签到,获得积分10
5秒前
完美世界应助芝麻花开采纳,获得10
6秒前
你说完成签到,获得积分10
7秒前
8秒前
9秒前
qwa发布了新的文献求助10
9秒前
轩辕德地发布了新的文献求助10
10秒前
疯狂的虔完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
tangtang完成签到 ,获得积分10
17秒前
拾壹发布了新的文献求助10
17秒前
田様应助lihua采纳,获得10
17秒前
gnr2000发布了新的文献求助30
18秒前
芝麻花开完成签到,获得积分10
19秒前
19秒前
20秒前
Hello应助冷艳的立果采纳,获得80
20秒前
21秒前
25秒前
姜姜发布了新的文献求助10
25秒前
swordlee发布了新的文献求助10
26秒前
JamesPei应助xwk采纳,获得10
30秒前
31秒前
Erin发布了新的文献求助10
32秒前
Joefish完成签到,获得积分10
32秒前
Nicy发布了新的文献求助10
32秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546392
求助须知:如何正确求助?哪些是违规求助? 3123535
关于积分的说明 9355677
捐赠科研通 2822080
什么是DOI,文献DOI怎么找? 1551259
邀请新用户注册赠送积分活动 723282
科研通“疑难数据库(出版商)”最低求助积分说明 713690