氯氰菊酯
生物
夜蛾科
斜纹夜蛾
生殖器鳞翅目
氰戊菊酯
人口
拟除虫菊酯
毒理
植物
杀虫剂
生态学
人口学
社会学
作者
Li Xu,Hongyu Liu,Bo Li,Guangling Li,Runqiang Liu,Dongzhi Li
标识
DOI:10.1017/s0007485324000282
摘要
Abstract Carboxylesterases (CarEs) is an important detoxification enzyme system in phase Ⅰ participating in insecticides resistance. In our previous study, SlCarE054, a CarEs gene from lepidoptera class, was screened out to be upregulated in a pyrethroids and organophosphates resistant population. Its overexpression was verified in two field-collected populations of Spodoptera litura (Lepidoptera: Noctuidae) resistant to pyrethroids and organophosphates by qRT-PCR. Spatiotemporal expression results showed that SlCarE054 was highly expressed in the pupae stage and the digestive tissue midgut. To further explore its role in pyrethroids and organophosphates resistance, its metabolism activity to insecticides was determined by UPLC. Its recombinant protein showed significant metabolism activity to cyhalothrin and fenvalerate, but not to phoxim or chlorpyrifos. The metabolic activity of SlCarE054 to β -cypermethrin showed stereoselectivity, with higher metabolic activity to θ -cypermethrin than the enantiomer α -cypermethrin. The metabolite of β -cypermethrin was identified as 3-phenoxybenzaldehyde. Further modelling and docking analysis indicated that β -cypermethrin, cyhalothrin and fenvalerate could bind with the catalytic triad of the 3D structure of SlCarE054. The interaction of β -cypermethrin with SlCarE054 also showed the lowest binding energy. Our work provides evidence that SlCarE054 play roles in β -cypermethrin resistance in S. litura .
科研通智能强力驱动
Strongly Powered by AbleSci AI