Association Between Visceral Obesity Index and Diabetes: A Systematic Review and Meta-analysis

荟萃分析 肥胖 糖尿病 医学 索引(排版) 系统回顾 联想(心理学) 内科学 梅德林 内分泌学 生物 心理学 计算机科学 生物化学 万维网 心理治疗师
作者
Ruixue Deng,Weijie Chen,Zepeng Zhang,Jingzhou Zhang,Ying Wang,Baichuan Sun,Kai Yin,Jingsi Cao,Xuechun Fan,Yuan Zhang,Huan Liu,Jinxu Fang,Jiamei Song,Bin Yu,Jia Mi,Xiangyan Li
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [The Endocrine Society]
卷期号:109 (10): 2692-2707 被引量:1
标识
DOI:10.1210/clinem/dgae303
摘要

Abstract Content The correlation between visceral obesity index (VAI) and diabetes and accuracy of early prediction of diabetes are still controversial. Objective This study aims to review the relationship between high level of VAI and diabetes and early predictive value of diabetes. Data Sources The databases of PubMed, Cochrane, Embase, and Web of Science were searched until October 17, 2023. Study Selection After adjusting for confounding factors, the original study on the association between VAI and diabetes was analyzed. Data Extraction We extracted odds ratio (OR) between VAI and diabetes management after controlling for mixed factors, and the sensitivity, specificity, and diagnostic 4-grid table for early prediction of diabetes. Data Synthesis Fifty-three studies comprising 595 946 participants were included. The findings of the meta-analysis elucidated that in cohort studies, a high VAI significantly increased the risk of diabetes mellitus in males (OR = 2.83 [95% CI, 2.30-3.49]) and females (OR = 3.32 [95% CI, 2.48-4.45]). The receiver operating characteristic, sensitivity, and specificity of VAI for early prediction of diabetes in males were 0.64 (95% CI, .62–.66), 0.57 (95% CI, .53–.61), and 0.65 (95% CI, .61–.69), respectively, and 0.67 (95% CI, .65–.69), 0.66 (95% CI, .60–.71), and 0.61 (95% CI, .57–.66) in females, respectively. Conclusion VAI is an independent predictor of the risk of diabetes, yet its predictive accuracy remains limited. In future studies, determine whether VAI can be used in conjunction with other related indicators to early predict the risk of diabetes, to enhance the accuracy of prediction of the risk of diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tracy完成签到,获得积分10
1秒前
龙世界发布了新的文献求助10
1秒前
1秒前
喜悦中道应助苏杰采纳,获得10
2秒前
于凡完成签到,获得积分10
2秒前
FashionBoy应助HANK2024采纳,获得10
2秒前
宫城应助呆萌代桃采纳,获得10
3秒前
小田完成签到,获得积分20
3秒前
忧虑的向日葵完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
bkagyin应助hanxin108采纳,获得10
3秒前
Ava应助绝尘采纳,获得10
4秒前
开灯人和关灯人完成签到,获得积分10
4秒前
甲醇乙醇发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
8秒前
8秒前
亦i完成签到,获得积分10
8秒前
完美世界应助eurus采纳,获得30
8秒前
复方蛋酥卷完成签到,获得积分10
8秒前
8秒前
领导范儿应助研友_LjbjzL采纳,获得10
9秒前
9秒前
情怀应助缥缈冰珍采纳,获得10
9秒前
Ghiocel发布了新的文献求助30
9秒前
7777juju完成签到,获得积分10
9秒前
Heyu完成签到,获得积分10
10秒前
杜小杜完成签到,获得积分10
10秒前
kajimi完成签到,获得积分10
10秒前
hanxin108完成签到,获得积分20
10秒前
英勇的鼠标完成签到,获得积分10
11秒前
12秒前
科研通AI5应助吹啊采纳,获得10
12秒前
追寻的涵菱完成签到,获得积分10
12秒前
无花果应助清新的沛蓝采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3523628
求助须知:如何正确求助?哪些是违规求助? 3104493
关于积分的说明 9270150
捐赠科研通 2801245
什么是DOI,文献DOI怎么找? 1537570
邀请新用户注册赠送积分活动 715573
科研通“疑难数据库(出版商)”最低求助积分说明 708950