清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Approaches for Assessing Rechargeable Battery State-of-Charge in Unmanned Aircraft Vehicle-eVTOL

荷电状态 电池(电) 电荷(物理) 航空航天工程 计算机科学 航空学 汽车工程 国家(计算机科学) 人工智能 工程类 物理 算法 功率(物理) 量子力学
作者
Minh-Tan Phung,Tri-Chan-Hung Nguyen,M. Shaheer Akhtar,O‐Bong Yang
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:81: 102380-102380
标识
DOI:10.1016/j.jocs.2024.102380
摘要

The long stability of electric vertical take-off and landing (eVTOL) aircraft is majorly associated with energy storage devices like batteries. Lithium-ion battery (LIB) is frequently used battery in most of eVTOL because they have high charge storage capacity, good health of battery and long-life cycles. To maintain the health of battery, the state-of-charge (SoC) and state-of-health (SoH) are the most important parameters. This study demonstrates the SoC evaluation of batteries in eVTOL aircrafts and then forecasts SoC of batteries using different machine learning (ML) approaches such as Support Vector Regression, Random Forest, Linear Regression. The experimental dataset was collected by an open portal at Carnegie Mellon University wherein over 15 million records including a hundred charge/discharge cycles, and several working conditions are available. SoC of batteries was first calculated by using collected batterie's dataset. Input parameters for SoC forecasting by ML models were prepared with different features such as voltage, current, charging/discharging energy and temperature. By feature selection analysis, EDischarge and voltage were found to be the most effective features for SoC of battery. The experimental dataset was first split into 80% of training and 20% of testing and then applied for three ML models (Support Vector Regression, Random Forest, Linear Regression). As compared to other ML models, Random Forest presented the best performance having the lowest error values (RMSE ≈ 0.000985, R2 = 0.9996) due to non-linear relationship between every feature and SoC. The studies suggested that ML approach for battery's SoC forecasting would provide promising methods to manage the health of battery for eVTOL aircraft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
1分钟前
SciGPT应助美丽松鼠采纳,获得10
2分钟前
NexusExplorer应助更深的蓝采纳,获得10
2分钟前
2分钟前
美丽松鼠发布了新的文献求助10
2分钟前
2分钟前
川藏客完成签到 ,获得积分10
3分钟前
SXW发布了新的文献求助10
3分钟前
滕皓轩完成签到 ,获得积分10
3分钟前
Wang完成签到 ,获得积分20
3分钟前
美丽松鼠完成签到,获得积分20
3分钟前
烟花应助美丽松鼠采纳,获得10
4分钟前
顺心飞雪完成签到 ,获得积分10
5分钟前
李爱国应助明烛天南采纳,获得10
5分钟前
小马甲应助ghx采纳,获得10
5分钟前
nadia完成签到,获得积分10
6分钟前
星辰大海应助科研通管家采纳,获得10
6分钟前
6分钟前
Jackie完成签到,获得积分10
6分钟前
更深的蓝发布了新的文献求助10
7分钟前
更深的蓝完成签到,获得积分10
7分钟前
在水一方应助yanhua采纳,获得10
7分钟前
7分钟前
ghx发布了新的文献求助10
7分钟前
寻道图强应助nadia采纳,获得30
7分钟前
7分钟前
我是老大应助ghx采纳,获得10
7分钟前
yanhua发布了新的文献求助10
7分钟前
7分钟前
Jackie发布了新的文献求助10
7分钟前
Jstar应助nadia采纳,获得30
7分钟前
Zoe完成签到 ,获得积分10
7分钟前
yanhua完成签到,获得积分20
8分钟前
9分钟前
ghx发布了新的文献求助10
9分钟前
蔡从安完成签到,获得积分20
9分钟前
ghx完成签到,获得积分10
9分钟前
小燕子完成签到 ,获得积分10
10分钟前
酷波er应助淡定硬币采纳,获得10
10分钟前
11分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Achieving 99% link uptime on a fleet of 100G space laser inter-satellite links in LEO 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3090960
求助须知:如何正确求助?哪些是违规求助? 2743295
关于积分的说明 7572896
捐赠科研通 2393932
什么是DOI,文献DOI怎么找? 1269529
科研通“疑难数据库(出版商)”最低求助积分说明 614345
版权声明 598756