Machine Learning Approaches for Assessing Rechargeable Battery State-of-Charge in Unmanned Aircraft Vehicle-eVTOL

荷电状态 电池(电) 电荷(物理) 航空航天工程 计算机科学 航空学 汽车工程 国家(计算机科学) 人工智能 工程类 物理 算法 功率(物理) 量子力学
作者
Minh-Tan Phung,Tri-Chan-Hung Nguyen,M. Shaheer Akhtar,O‐Bong Yang
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:81: 102380-102380
标识
DOI:10.1016/j.jocs.2024.102380
摘要

The long stability of electric vertical take-off and landing (eVTOL) aircraft is majorly associated with energy storage devices like batteries. Lithium-ion battery (LIB) is frequently used battery in most of eVTOL because they have high charge storage capacity, good health of battery and long-life cycles. To maintain the health of battery, the state-of-charge (SoC) and state-of-health (SoH) are the most important parameters. This study demonstrates the SoC evaluation of batteries in eVTOL aircrafts and then forecasts SoC of batteries using different machine learning (ML) approaches such as Support Vector Regression, Random Forest, Linear Regression. The experimental dataset was collected by an open portal at Carnegie Mellon University wherein over 15 million records including a hundred charge/discharge cycles, and several working conditions are available. SoC of batteries was first calculated by using collected batterie's dataset. Input parameters for SoC forecasting by ML models were prepared with different features such as voltage, current, charging/discharging energy and temperature. By feature selection analysis, EDischarge and voltage were found to be the most effective features for SoC of battery. The experimental dataset was first split into 80% of training and 20% of testing and then applied for three ML models (Support Vector Regression, Random Forest, Linear Regression). As compared to other ML models, Random Forest presented the best performance having the lowest error values (RMSE ≈ 0.000985, R2 = 0.9996) due to non-linear relationship between every feature and SoC. The studies suggested that ML approach for battery's SoC forecasting would provide promising methods to manage the health of battery for eVTOL aircraft.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PXY应助屁王采纳,获得10
刚刚
sunburst完成签到,获得积分10
刚刚
狼主完成签到 ,获得积分10
刚刚
吕亦寒完成签到,获得积分10
刚刚
junzilan发布了新的文献求助10
1秒前
ZL发布了新的文献求助10
1秒前
1秒前
亻鱼完成签到,获得积分10
1秒前
超级蘑菇完成签到 ,获得积分10
2秒前
2秒前
2秒前
congguitar完成签到,获得积分10
2秒前
3秒前
limof完成签到,获得积分20
3秒前
跳跃聪健发布了新的文献求助10
3秒前
168521kf完成签到,获得积分10
3秒前
4秒前
Avatar完成签到,获得积分10
4秒前
4秒前
小田完成签到,获得积分10
5秒前
JJJ应助大气沅采纳,获得10
5秒前
6秒前
kydd驳回了桐桐应助
6秒前
7秒前
7秒前
7秒前
英俊的铭应助洛尚采纳,获得10
7秒前
8秒前
在水一方应助Harlotte采纳,获得10
8秒前
廖天佑完成签到,获得积分0
8秒前
SweepingMonk应助梁小鑫采纳,获得10
8秒前
DTBTY完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
JACK发布了新的文献求助10
10秒前
小宋同学不能怂完成签到 ,获得积分10
10秒前
Peng丶Young完成签到,获得积分10
10秒前
10秒前
学术新星完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740