Understanding the Manufacturing Process of Lipid Nanoparticles for mRNA Delivery Using Machine Learning

下游加工 下游(制造业) 制造工艺 信使核糖核酸 微流控 化学 纳米技术 计算机科学 材料科学 工程类 色谱法 复合材料 生物化学 运营管理 基因
作者
Shinya Sato,Syusuke Sano,Hiroki Muto,Kenji Kubara,Keita Kondo,Takayuki Miyazaki,Yuta Suzuki,Yoshifumi Uemoto,Koji Ukai
出处
期刊:Chemical & Pharmaceutical Bulletin [Pharmaceutical Society of Japan]
卷期号:72 (6): 529-539
标识
DOI:10.1248/cpb.c24-00089
摘要

Lipid nanoparticles (LNPs), used for mRNA vaccines against severe acute respiratory syndrome coronavirus 2, protect mRNA and deliver it into cells, making them an essential delivery technology for RNA medicine. The LNPs manufacturing process consists of two steps, the upstream process of preparing LNPs and the downstream process of removing ethyl alcohol (EtOH) and exchanging buffers. Generally, a microfluidic device is used in the upstream process, and a dialysis membrane is used in the downstream process. However, there are many parameters in the upstream and downstream processes, and it is difficult to determine the effects of variations in the manufacturing parameters on the quality of the LNPs and establish a manufacturing process to obtain high-quality LNPs. This study focused on manufacturing mRNA-LNPs using a microfluidic device. Extreme gradient boosting (XGBoost), which is a machine learning technique, identified EtOH concentration (flow rate ratio), buffer pH, and total flow rate as the process parameters that significantly affected the particle size and encapsulation efficiency. Based on these results, we derived the manufacturing conditions for different particle sizes (approximately 80 and 200 nm) of LNPs using Bayesian optimization. In addition, the particle size of the LNPs significantly affected the protein expression level of mRNA in cells. The findings of this study are expected to provide useful information that will enable the rapid and efficient development of mRNA-LNPs manufacturing processes using microfluidic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
None完成签到 ,获得积分10
2秒前
2秒前
ghfgjjf发布了新的文献求助10
2秒前
阿啵呲嘚呃of咯完成签到,获得积分10
2秒前
3秒前
3秒前
扎心应助王叮叮采纳,获得10
4秒前
hbr发布了新的文献求助10
4秒前
Sylvia0528发布了新的文献求助10
4秒前
5秒前
润之完成签到,获得积分10
5秒前
华仔应助小宋同学采纳,获得10
5秒前
7尔阿婆发布了新的文献求助10
5秒前
王王的苏发布了新的文献求助10
6秒前
乐乐应助波粒海苔采纳,获得10
6秒前
天天快乐应助Letter采纳,获得10
6秒前
wjx完成签到,获得积分10
6秒前
wanting发布了新的文献求助10
6秒前
7秒前
研友_Zbb4mZ发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
肿肿发布了新的文献求助10
10秒前
10秒前
10秒前
田様应助漂亮的冰菱采纳,获得10
10秒前
化学小白完成签到,获得积分10
11秒前
lemon完成签到,获得积分10
12秒前
研友_5Z46A5发布了新的文献求助10
13秒前
FashionBoy应助hhh112采纳,获得10
13秒前
昔年若许发布了新的文献求助10
13秒前
13秒前
eleven完成签到,获得积分10
13秒前
漂亮的冰菱完成签到,获得积分10
14秒前
深情安青应助LIU采纳,获得10
14秒前
ZWK发布了新的文献求助10
14秒前
15秒前
孤独的一鸣应助王王的苏采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953933
求助须知:如何正确求助?哪些是违规求助? 3499947
关于积分的说明 11097597
捐赠科研通 3230435
什么是DOI,文献DOI怎么找? 1785944
邀请新用户注册赠送积分活动 869717
科研通“疑难数据库(出版商)”最低求助积分说明 801572