下游加工
下游(制造业)
制造工艺
信使核糖核酸
微流控
化学
纳米技术
计算机科学
材料科学
工程类
色谱法
复合材料
生物化学
运营管理
基因
作者
Shinya Sato,Syusuke Sano,Hiroki Muto,Kenji Kubara,Keita Kondo,Takayuki Miyazaki,Yuta Suzuki,Yoshifumi Uemoto,Koji Ukai
出处
期刊:Chemical & Pharmaceutical Bulletin
[Pharmaceutical Society of Japan]
日期:2024-06-04
卷期号:72 (6): 529-539
标识
DOI:10.1248/cpb.c24-00089
摘要
Lipid nanoparticles (LNPs), used for mRNA vaccines against severe acute respiratory syndrome coronavirus 2, protect mRNA and deliver it into cells, making them an essential delivery technology for RNA medicine. The LNPs manufacturing process consists of two steps, the upstream process of preparing LNPs and the downstream process of removing ethyl alcohol (EtOH) and exchanging buffers. Generally, a microfluidic device is used in the upstream process, and a dialysis membrane is used in the downstream process. However, there are many parameters in the upstream and downstream processes, and it is difficult to determine the effects of variations in the manufacturing parameters on the quality of the LNPs and establish a manufacturing process to obtain high-quality LNPs. This study focused on manufacturing mRNA-LNPs using a microfluidic device. Extreme gradient boosting (XGBoost), which is a machine learning technique, identified EtOH concentration (flow rate ratio), buffer pH, and total flow rate as the process parameters that significantly affected the particle size and encapsulation efficiency. Based on these results, we derived the manufacturing conditions for different particle sizes (approximately 80 and 200 nm) of LNPs using Bayesian optimization. In addition, the particle size of the LNPs significantly affected the protein expression level of mRNA in cells. The findings of this study are expected to provide useful information that will enable the rapid and efficient development of mRNA-LNPs manufacturing processes using microfluidic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI