已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using spectral vegetation indices and machine learning models for predicting the yield of sugar beet (Beta vulgaris L.) under different irrigation treatments

归一化差异植被指数 甜菜 数学 机器学习 支持向量机 灌溉 产量(工程) 植被(病理学) 人工智能 主成分分析 统计 农学 计算机科学 叶面积指数 医学 材料科学 病理 冶金 生物
作者
Hasan Ali İrik,Ewa Ropelewska,Necati Çetin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109019-109019 被引量:1
标识
DOI:10.1016/j.compag.2024.109019
摘要

Yield prediction is essential for production planning, resource management, and competitive advantages. The use of vegetation indices and machine learning for yield prediction is rapid, practical, and accurate and contributes to the development of digital agriculture. Although many studies have been carried out on yield estimation, the number of studies on sugar beet and irrigation applications is limited. To solve this problem, in this study yield prediction of sugar beet under different irrigation treatments was carried out using spectral reflection-based vegetation indices obtained by proximal measurements and developed machine learning models. The multilayer perceptron (MLP), random forest (RF), k-nearest (kNN), bagging (BAG), support vector regression (SVR), gaussian processes (GP), and CustomNet (CN) predictors were used in yield prediction. The irrigation treatments included I100 (application of irrigation to increase the available moisture to field capacity by around 45–50% of the water holding capacity at the root depth), I75 (75% of the water applied in the control group), I50 (50% of the water applied in the control group), and I125 (25% of the water applied in the control group). The combinations of vegetation indices were determined using Pearson correlation and principal component analysis. OSAVI, SAVI, and NDVI had the most significant influence on the yield prediction of sugar beet. Among the combinations used, the kNN1 model (including all attributes as input) showed high R2 values of 0.99 for training and 0.64 for testing. In addition, the kNN3 model (including Treatment, NDVI, NWI, and OSAVI as inputs) had R2 values of 0.97 for training and 0.65 for testing, indicating successful outcomes. However, the MLP1 and SVR1 models had lower results with test R2 values of 0.53 and 0.56, respectively. The results demonstrate the successful application of machine learning and vegetation indices for yield prediction. The proposed approaches could encourage agricultural experts and researchers in future work for yield mapping and identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
jing32yi发布了新的文献求助10
3秒前
天天快乐应助南部之星琪采纳,获得10
3秒前
欣喜凌蝶完成签到,获得积分10
5秒前
ding应助yuM采纳,获得30
8秒前
小蘑菇应助快乐妖丽采纳,获得10
10秒前
大个应助荞麦面采纳,获得10
15秒前
17秒前
爹爹发布了新的文献求助10
20秒前
予善德明完成签到,获得积分10
20秒前
友好聪健发布了新的文献求助10
20秒前
CodeCraft应助Liao采纳,获得10
24秒前
John完成签到 ,获得积分10
24秒前
25秒前
hnxxangel发布了新的文献求助10
25秒前
科研通AI2S应助爹爹采纳,获得10
25秒前
25秒前
Duck完成签到,获得积分10
28秒前
Zorn发布了新的文献求助10
28秒前
28秒前
123zyx完成签到 ,获得积分10
28秒前
彭于晏应助果砸采纳,获得10
29秒前
31秒前
CodeCraft应助mysyne采纳,获得10
33秒前
荞麦面发布了新的文献求助10
34秒前
Hello应助过于傻逼采纳,获得10
37秒前
40秒前
顾矜应助基围虾采纳,获得10
42秒前
hackfeng完成签到,获得积分10
45秒前
高屋建瓴完成签到,获得积分10
45秒前
49秒前
AA完成签到,获得积分10
49秒前
英姑应助hnxxangel采纳,获得10
49秒前
学术乞丐感谢好心人完成签到 ,获得积分10
49秒前
71完成签到,获得积分10
50秒前
Yanni发布了新的文献求助10
51秒前
adearfish完成签到 ,获得积分10
51秒前
风中的天菱完成签到,获得积分10
51秒前
53秒前
予善德明发布了新的文献求助10
55秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146435
求助须知:如何正确求助?哪些是违规求助? 2797816
关于积分的说明 7825904
捐赠科研通 2454242
什么是DOI,文献DOI怎么找? 1306225
科研通“疑难数据库(出版商)”最低求助积分说明 627679
版权声明 601503