清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using spectral vegetation indices and machine learning models for predicting the yield of sugar beet (Beta vulgaris L.) under different irrigation treatments

归一化差异植被指数 甜菜 数学 机器学习 支持向量机 灌溉 产量(工程) 植被(病理学) 人工智能 主成分分析 统计 农学 计算机科学 叶面积指数 医学 生物 病理 冶金 材料科学
作者
Hasan Ali İrik,Ewa Ropelewska,Necati Çetin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 109019-109019 被引量:1
标识
DOI:10.1016/j.compag.2024.109019
摘要

Yield prediction is essential for production planning, resource management, and competitive advantages. The use of vegetation indices and machine learning for yield prediction is rapid, practical, and accurate and contributes to the development of digital agriculture. Although many studies have been carried out on yield estimation, the number of studies on sugar beet and irrigation applications is limited. To solve this problem, in this study yield prediction of sugar beet under different irrigation treatments was carried out using spectral reflection-based vegetation indices obtained by proximal measurements and developed machine learning models. The multilayer perceptron (MLP), random forest (RF), k-nearest (kNN), bagging (BAG), support vector regression (SVR), gaussian processes (GP), and CustomNet (CN) predictors were used in yield prediction. The irrigation treatments included I100 (application of irrigation to increase the available moisture to field capacity by around 45–50% of the water holding capacity at the root depth), I75 (75% of the water applied in the control group), I50 (50% of the water applied in the control group), and I125 (25% of the water applied in the control group). The combinations of vegetation indices were determined using Pearson correlation and principal component analysis. OSAVI, SAVI, and NDVI had the most significant influence on the yield prediction of sugar beet. Among the combinations used, the kNN1 model (including all attributes as input) showed high R2 values of 0.99 for training and 0.64 for testing. In addition, the kNN3 model (including Treatment, NDVI, NWI, and OSAVI as inputs) had R2 values of 0.97 for training and 0.65 for testing, indicating successful outcomes. However, the MLP1 and SVR1 models had lower results with test R2 values of 0.53 and 0.56, respectively. The results demonstrate the successful application of machine learning and vegetation indices for yield prediction. The proposed approaches could encourage agricultural experts and researchers in future work for yield mapping and identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助Fairy采纳,获得10
42秒前
willlee完成签到 ,获得积分10
1分钟前
xh完成签到 ,获得积分10
1分钟前
搜集达人应助kukudou2采纳,获得10
2分钟前
阿里完成签到,获得积分10
2分钟前
2分钟前
Fairy发布了新的文献求助10
2分钟前
Sunny完成签到,获得积分10
3分钟前
lling完成签到 ,获得积分10
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
4分钟前
伯劳发布了新的文献求助10
5分钟前
neversay4ever完成签到 ,获得积分10
5分钟前
计划完成签到,获得积分10
5分钟前
dalei001完成签到 ,获得积分10
5分钟前
li完成签到 ,获得积分10
6分钟前
Alisha完成签到,获得积分10
6分钟前
T723完成签到 ,获得积分10
6分钟前
桦奕兮完成签到 ,获得积分10
6分钟前
悠树里完成签到,获得积分10
6分钟前
7分钟前
飘逸剑发布了新的文献求助10
7分钟前
无极2023完成签到 ,获得积分10
7分钟前
大个应助飘逸剑采纳,获得10
7分钟前
小马甲应助飞翔的企鹅采纳,获得20
8分钟前
8分钟前
taster发布了新的文献求助10
8分钟前
情怀应助taster采纳,获得10
8分钟前
9分钟前
9分钟前
飞翔的企鹅完成签到,获得积分10
9分钟前
9分钟前
静静完成签到,获得积分10
9分钟前
勤奋流沙完成签到 ,获得积分10
9分钟前
10分钟前
要减肥的春天完成签到,获得积分10
10分钟前
yong完成签到 ,获得积分10
10分钟前
万能图书馆应助1577采纳,获得10
11分钟前
11分钟前
1577发布了新的文献求助10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635197
求助须知:如何正确求助?哪些是违规求助? 4735116
关于积分的说明 14989861
捐赠科研通 4792883
什么是DOI,文献DOI怎么找? 2560055
邀请新用户注册赠送积分活动 1520241
关于科研通互助平台的介绍 1480364