An in-depth evaluation of deep learning-enabled adaptive approaches for detecting obstacles using sensor-fused data in autonomous vehicles

计算机科学 深度学习 人工智能 自主学习 实时计算 机器学习 计算机视觉 数学 数学教育
作者
Abhishek Thakur,Sudhanshu K. Mishra
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108550-108550 被引量:2
标识
DOI:10.1016/j.engappai.2024.108550
摘要

This paper delivers an exhaustive analysis of the fusion of multi-sensor technologies, including traditional sensors such as cameras, Light Detection and Ranging(LiDAR), Radio Detection and Ranging(RADAR), and ultrasonic sensors, with Artificial Intelligence(AI) powered methodologies in obstacle detection for Autonomous Vehicles(AVs). With the growing momentum in AVs adoption, a heightened need exists for versatile and resilient obstacle detection systems. Our research delves into study of literatures, where proposed approaches assimilate data from this diverse sensor suite, integrated through Deep Learning(DL) techniques, to refine AV performance. Recent advancements and prevailing challenges within the domain are thoroughly examined, with particular focus on the integration of sensor fusion techniques, the facilitation of real-time processing via edge and fog computing, and the implementation of advanced artificial intelligence architectures, including Convolutional Neural Networks(CNNs), Recurrent Neural Networks(RNNs), and Generative Adversarial Networks(GANs), to enhance data interpretation efficacy. In conclusion, the paper underscores the critical contribution of multi-sensor arrays and deep learning in enhancing the safety and reliability of autonomous vehicles, offering significant perspectives for future research and technological progress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助yooloo采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
aslink完成签到,获得积分10
2秒前
2秒前
冷酷盼曼完成签到,获得积分10
3秒前
zh关闭了zh文献求助
3秒前
4秒前
细腻慕儿完成签到 ,获得积分10
4秒前
XUNGEER11完成签到,获得积分10
4秒前
4秒前
5秒前
小圆发布了新的文献求助10
5秒前
lipeng完成签到,获得积分10
5秒前
hf完成签到,获得积分10
6秒前
6秒前
英姑应助余甘木采纳,获得10
6秒前
风趣的胜应助王玉采纳,获得10
6秒前
6秒前
我是老大应助wwz采纳,获得10
6秒前
勤奋的琳完成签到,获得积分10
7秒前
Tomice发布了新的文献求助10
7秒前
ding应助能能鹤采纳,获得10
8秒前
enen发布了新的文献求助10
8秒前
周周发布了新的文献求助10
8秒前
所所应助听枫采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
香蕉觅云应助XUNGEER11采纳,获得10
9秒前
9秒前
扭扭车发布了新的文献求助10
9秒前
龙哥发布了新的文献求助10
10秒前
10秒前
洪亮完成签到,获得积分0
10秒前
11秒前
drfy123发布了新的文献求助10
11秒前
研友_VZG7GZ应助独特的苗条采纳,获得10
12秒前
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199