Focus-Attention Approach in Optimizing DETR for Object Detection from High-Resolution Images

光学(聚焦) 计算机科学 高分辨率 分辨率(逻辑) 对象(语法) 人工智能 计算机视觉 目标检测 遥感 模式识别(心理学) 地理 物理 光学
作者
Nguyen Hoanh,Tran Vu Pham
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:296: 111939-111939 被引量:3
标识
DOI:10.1016/j.knosys.2024.111939
摘要

Transformer-based detectors have recently achieved remarkable success in object detection, revolutionizing the field with their efficiency and accuracy. However, applying these models to high-resolution images presents significant challenges due to the increased computational demands and complexity of processing dense, high-resolution data. In this paper, we introduce a novel model specifically designed for object detection from high-resolution imagery. This model incorporates a multi-layer object-focus network along with a transformer encoder-decoder structure. Specifically, the model employs a dual-head strategy in the object-focus network to balance the detailed analysis of small objects with computational efficiency. This is achieved by leveraging data sparsity to reduce unnecessary computations in massive background regions. Additionally, to improve detection performance for small objects, we propose a method to effectively apply the transformer encoder-decoder structure combined with the object-focus network on the multi-layer feature maps of the feature pyramid. Our extensive evaluations of the VisDrone, MS-COCO, and UAVid datasets demonstrate that our model outperforms other DETR-based detectors in both detection accuracy and computational speed, highlighting its superior performance. These results indicate a significant advancement in the field of high-resolution object detection utilizing transformer architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yesir发布了新的文献求助10
刚刚
小二郎应助迷你的冰巧采纳,获得10
1秒前
2秒前
2秒前
3秒前
在水一方应助shawn采纳,获得10
3秒前
neurospine完成签到,获得积分10
5秒前
素和姣姣发布了新的文献求助10
6秒前
pzh完成签到 ,获得积分10
6秒前
华仔应助梦之哆啦采纳,获得10
7秒前
qwerty完成签到,获得积分10
8秒前
8秒前
9秒前
脑三问发布了新的文献求助10
13秒前
13秒前
共享精神应助义气的羽毛采纳,获得10
13秒前
13秒前
紫紫完成签到,获得积分10
14秒前
香锅不要辣完成签到 ,获得积分10
14秒前
自然紫山完成签到,获得积分10
15秒前
zyh完成签到,获得积分10
15秒前
16秒前
斯文败类应助vic采纳,获得10
17秒前
24秒前
素和姣姣完成签到,获得积分10
26秒前
shinhee完成签到,获得积分10
27秒前
思源应助GEZI采纳,获得10
28秒前
打打应助追寻南珍采纳,获得30
29秒前
zxzx关注了科研通微信公众号
29秒前
调研昵称发布了新的文献求助10
29秒前
29秒前
gluwater完成签到,获得积分20
30秒前
31秒前
万能图书馆应助ddd采纳,获得30
32秒前
小女子常戚戚完成签到,获得积分10
35秒前
等等完成签到,获得积分20
35秒前
vic发布了新的文献求助10
37秒前
Akim应助戴先森采纳,获得10
38秒前
39秒前
40秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685