Small object detection of imbalanced traffic sign samples based on hierarchical feature fusion

计算机科学 交通标志识别 交通标志 人工智能 模式识别(心理学) 数据挖掘 目标检测 精确性和召回率 符号(数学) 数学 数学分析
作者
Qian Zhao,Wei-Feng Guo
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:32 (02) 被引量:1
标识
DOI:10.1117/1.jei.32.2.023043
摘要

Traffic sign recognition plays a crucial role in the development of automated transportation systems, and its accuracy and real-time capabilities are fundamental to ensuring automatic driving safety. However, the size of most traffic signs is <0.5 % of the traffic scene, and the imbalanced sample distribution can limit the accuracy of recognition models. To address these problems, we propose a small-scale sensitive traffic sign detection algorithm, named GH-YOLOV5. Specifically, we present a gated enhanced module to enhance the expression of small targets, which uses a two-dimensional mask to extract the position features from the bottom to the top. We also design a hierarchical context embedding-transformer module to correctly migrate the cross-layer features of small targets to deep semantic features. Moreover, to solve the problem of extremely unbalanced categories, we put forward a new data enhancement strategy, which uses the spatial density distribution of traffic signs to synthesize samples for a small number of classes. Finally, we use a dynamic resolution strategy to compensate for small target information. The experimental results are conducted on the widely used TT100k dataset, and our results show that the proposed algorithm significantly improves the model’s ability to perceive small targets and achieves values of 90.83%, 90.32%, and 94.33% for precision, recall, and mean average precision, respectively. Therefore, we provide an efficient traffic sign recognition scheme for advanced driver assistance systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后海莲发布了新的文献求助10
刚刚
xmhxpz发布了新的文献求助10
刚刚
我是老大应助江江江江采纳,获得10
1秒前
3秒前
Jasper应助kk采纳,获得10
3秒前
5秒前
852应助timeless采纳,获得10
10秒前
华仔应助旺仔牛奶采纳,获得10
10秒前
10秒前
柯伊达发布了新的文献求助10
10秒前
12秒前
思源应助dada采纳,获得10
14秒前
15秒前
15秒前
zho发布了新的文献求助10
17秒前
18秒前
18秒前
hzj完成签到 ,获得积分10
19秒前
大大发布了新的文献求助10
19秒前
完美世界应助猪猪hero采纳,获得10
20秒前
徐茂瑜完成签到 ,获得积分10
20秒前
成7发布了新的文献求助10
20秒前
受伤哈密瓜完成签到 ,获得积分10
22秒前
timeless发布了新的文献求助10
24秒前
24秒前
yanzu应助sheh采纳,获得10
24秒前
科目三应助lizhiqian2024采纳,获得10
26秒前
今天只做一件事应助JZJZJZ采纳,获得10
26秒前
成7完成签到,获得积分10
27秒前
Moscrol完成签到,获得积分10
28秒前
Raizel关注了科研通微信公众号
28秒前
zzz发布了新的文献求助10
28秒前
30秒前
31秒前
朴实的煎蛋完成签到,获得积分10
32秒前
张绵羊关注了科研通微信公众号
34秒前
Jesse发布了新的文献求助10
35秒前
zzz完成签到,获得积分20
38秒前
38秒前
sissisue发布了新的文献求助20
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676958
求助须知:如何正确求助?哪些是违规求助? 3230982
关于积分的说明 9793559
捐赠科研通 2942079
什么是DOI,文献DOI怎么找? 1613001
邀请新用户注册赠送积分活动 761381
科研通“疑难数据库(出版商)”最低求助积分说明 736816