Improved production of novel (bola) glycolipid biosurfactants with the yeast Starmerella bombicola through an integrative approach combining genetic engineering and multiomics analyses

糖脂 酵母 发酵 化学 生物 生物化学 生化工程 生物技术 工程类
作者
Martijn Castelein,Nicolas de Fooz,Goedele Luyten,Lisa Van Renterghem,Sven Dierickx,Stijn Bovijn,Sophie Roelants,Lynn Vanhaecke,Wim Soetaert
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 183-202 被引量:1
标识
DOI:10.1016/b978-0-323-91697-4.00009-0
摘要

Starmerella bombicola is well known for its natural efficient capacity to produce glycolipids sophorolipids (SLs) at high titers (> 200 g/L) and high-volumetric productivities (> 2 g/L h). These traits make this nonpathogenic yeast industrially relevant, resulting in valorization of SLs as microbial biosurfactants by several companies. The efficient glycolipid machinery of S. bombicola has, on the other hand, been employed toward the biosynthesis of novel types of glycolipid biosurfactants. This has resulted in the generation of a battery of novel S. bombicola strains, producing a range of (novel) glycolipids of which an overview is given in the first part of this chapter. The novel glycolipids have varying properties resulting in a diverse valorization potential, which is very promising toward the further development of the bio-based economy. However, some of the novel S. bombicola strains suffer(ed) from decreased glycolipid productivity levels, while the molecular regulation of glycolipid biosynthesis with S. bombicola is yet to be fully elucidated. Our lab has applied several (integrated) -omic strategies to overcome these hurdles, and in some cases, this strategy allowed us to acquire the information required to resolve the productivity decrease, giving rise to efficient production of novel glycolipids. Further determination and integration of -omic datasets and even in-line/in-process determination of specific -omic data is expected to positively impact further developments and follow-up of glycolipid biosurfactant production processes with S. bombicola.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李时珍的皮完成签到,获得积分20
刚刚
wu发布了新的文献求助10
1秒前
顾衡毓完成签到,获得积分10
1秒前
烟花应助祈求科研圣体采纳,获得10
2秒前
虚幻海冬发布了新的文献求助30
2秒前
laoli2022关注了科研通微信公众号
2秒前
CANDYY完成签到,获得积分10
2秒前
李小强完成签到,获得积分10
2秒前
3秒前
alyssa发布了新的文献求助10
3秒前
chrisio完成签到,获得积分10
4秒前
无花果应助ddrose采纳,获得10
5秒前
CodeCraft应助伯赏汝燕采纳,获得10
6秒前
科研通AI2S应助顾衡毓采纳,获得10
6秒前
顾矜应助wu采纳,获得10
8秒前
8秒前
细腻晓露完成签到,获得积分10
10秒前
虚幻海冬完成签到,获得积分10
10秒前
10秒前
七慕凉应助典雅的飞丹采纳,获得50
11秒前
韩十四完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
纪绝悟完成签到,获得积分10
13秒前
14秒前
miluren发布了新的文献求助10
14秒前
优秀傲松发布了新的文献求助10
15秒前
哈哈哈发布了新的文献求助10
15秒前
FashionBoy应助大方向真采纳,获得10
15秒前
16秒前
调研昵称发布了新的文献求助10
18秒前
18秒前
100发布了新的文献求助10
19秒前
19秒前
20秒前
Docter发布了新的文献求助10
20秒前
李李发布了新的文献求助10
20秒前
橙味美年达完成签到,获得积分10
20秒前
20秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415846
求助须知:如何正确求助?哪些是违规求助? 3017528
关于积分的说明 8881796
捐赠科研通 2705241
什么是DOI,文献DOI怎么找? 1483342
科研通“疑难数据库(出版商)”最低求助积分说明 685682
邀请新用户注册赠送积分活动 680694