EBHI: A new Enteroscope Biopsy Histopathological H&E Image Dataset for image classification evaluation

活检 图像(数学) 计算机科学 人工智能 医学 放射科
作者
Weiming Hu,Chen Li,Md Mamunur Rahaman,Haoyuan Chen,Wanli Liu,Yudong Yao,Hongzan Sun,Marcin Grzegorzek,Xiaoyan Li
出处
期刊:Physica Medica [Elsevier]
卷期号:107: 102534-102534 被引量:11
标识
DOI:10.1016/j.ejmp.2023.102534
摘要

Colorectal cancer has become the third most common cancer worldwide, accounting for approximately 10% of cancer patients. Early detection of the disease is important for the treatment of colorectal cancer patients. Histopathological examination is the gold standard for screening colorectal cancer. However, the current lack of histopathological image datasets of colorectal cancer, especially enteroscope biopsies, hinders the accurate evaluation of computer-aided diagnosis techniques. Therefore, a multi-category colorectal cancer dataset is needed to test various medical image classification methods to find high classification accuracy and strong robustness.A new publicly available Enteroscope Biopsy Histopathological H&E Image Dataset (EBHI) is published in this paper. To demonstrate the effectiveness of the EBHI dataset, we have utilized several machine learning, convolutional neural networks and novel transformer-based classifiers for experimentation and evaluation, using an image with a magnification of 200×.Experimental results show that the deep learning method performs well on the EBHI dataset. Classical machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%.To the best of our knowledge, EBHI is the first publicly available colorectal histopathology enteroscope biopsy dataset with four magnifications and five types of images of tumor differentiation stages, totaling 5532 images. We believe that EBHI could attract researchers to explore new classification algorithms for the automated diagnosis of colorectal cancer, which could help physicians and patients in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
华仔应助marinemiao采纳,获得10
3秒前
爱学习的鼠鼠完成签到,获得积分10
3秒前
3秒前
左丘山河发布了新的文献求助10
4秒前
汉堡包应助晚风采纳,获得10
6秒前
coolplex发布了新的文献求助10
7秒前
Nini1203发布了新的文献求助10
7秒前
潇潇暮雨完成签到,获得积分10
9秒前
左丘山河完成签到,获得积分10
10秒前
10秒前
情怀应助robi采纳,获得10
10秒前
10秒前
善学以致用应助张大猛采纳,获得10
11秒前
科研通AI2S应助LGH采纳,获得10
13秒前
15秒前
一一完成签到 ,获得积分10
15秒前
SciGPT应助聂学雨采纳,获得10
15秒前
marinemiao发布了新的文献求助10
16秒前
18秒前
gzw完成签到,获得积分10
18秒前
18秒前
如意的新梅完成签到,获得积分10
19秒前
坚强的皮皮虾完成签到,获得积分10
19秒前
qiuxue发布了新的文献求助10
20秒前
yeayeayea发布了新的文献求助10
20秒前
20秒前
小鱼爱吃猫完成签到,获得积分20
20秒前
cc完成签到,获得积分10
22秒前
单薄店员发布了新的文献求助10
22秒前
Yoo.发布了新的文献求助10
22秒前
我爱科研完成签到 ,获得积分10
23秒前
领导范儿应助Nini1203采纳,获得10
23秒前
华仔应助菲菲菲采纳,获得10
23秒前
24秒前
robi发布了新的文献求助10
25秒前
星河在眼里完成签到,获得积分10
25秒前
天天完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825