EBHI: A new Enteroscope Biopsy Histopathological H&E Image Dataset for image classification evaluation

图像(数学) 活检 计算机科学 人工智能 模式识别(心理学) 医学 放射科
作者
Weiming Hu,Chen Li,Md Mamunur Rahaman,Haoyuan Chen,Wanli Liu,Yudong Yao,Hongzan Sun,Marcin Grzegorzek,Xiaoyan Li
出处
期刊:Physica Medica [Elsevier]
卷期号:107: 102534-102534 被引量:22
标识
DOI:10.1016/j.ejmp.2023.102534
摘要

Colorectal cancer has become the third most common cancer worldwide, accounting for approximately 10% of cancer patients. Early detection of the disease is important for the treatment of colorectal cancer patients. Histopathological examination is the gold standard for screening colorectal cancer. However, the current lack of histopathological image datasets of colorectal cancer, especially enteroscope biopsies, hinders the accurate evaluation of computer-aided diagnosis techniques. Therefore, a multi-category colorectal cancer dataset is needed to test various medical image classification methods to find high classification accuracy and strong robustness.A new publicly available Enteroscope Biopsy Histopathological H&E Image Dataset (EBHI) is published in this paper. To demonstrate the effectiveness of the EBHI dataset, we have utilized several machine learning, convolutional neural networks and novel transformer-based classifiers for experimentation and evaluation, using an image with a magnification of 200×.Experimental results show that the deep learning method performs well on the EBHI dataset. Classical machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%.To the best of our knowledge, EBHI is the first publicly available colorectal histopathology enteroscope biopsy dataset with four magnifications and five types of images of tumor differentiation stages, totaling 5532 images. We believe that EBHI could attract researchers to explore new classification algorithms for the automated diagnosis of colorectal cancer, which could help physicians and patients in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
FashionBoy应助大王张必成采纳,获得10
1秒前
Wiz111发布了新的文献求助10
1秒前
1秒前
2秒前
领导范儿应助小邸采纳,获得10
2秒前
3秒前
hehe完成签到 ,获得积分10
3秒前
3秒前
yang12345678完成签到,获得积分10
4秒前
元谷雪发布了新的文献求助10
4秒前
无奈世立发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
11关闭了11文献求助
6秒前
7秒前
passion关注了科研通微信公众号
7秒前
wangqianyu完成签到,获得积分20
7秒前
所所应助无奈世立采纳,获得10
8秒前
cyy发布了新的文献求助10
9秒前
9秒前
甜甜发布了新的文献求助10
9秒前
9秒前
10秒前
yang12345678发布了新的文献求助10
10秒前
岁华完成签到,获得积分10
10秒前
lvlv发布了新的文献求助10
11秒前
尹忆梅完成签到,获得积分10
11秒前
白白完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
Ethan发布了新的文献求助10
12秒前
君知行完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319859
求助须知:如何正确求助?哪些是违规求助? 4461827
关于积分的说明 13884803
捐赠科研通 4352481
什么是DOI,文献DOI怎么找? 2390628
邀请新用户注册赠送积分活动 1384354
关于科研通互助平台的介绍 1354131