EBHI: A new Enteroscope Biopsy Histopathological H&E Image Dataset for image classification evaluation

图像(数学) 活检 计算机科学 人工智能 模式识别(心理学) 医学 放射科
作者
Weiming Hu,Chen Li,Md Mamunur Rahaman,Haoyuan Chen,Wanli Liu,Yudong Yao,Hongzan Sun,Marcin Grzegorzek,Xiaoyan Li
出处
期刊:Physica Medica [Elsevier BV]
卷期号:107: 102534-102534 被引量:22
标识
DOI:10.1016/j.ejmp.2023.102534
摘要

Colorectal cancer has become the third most common cancer worldwide, accounting for approximately 10% of cancer patients. Early detection of the disease is important for the treatment of colorectal cancer patients. Histopathological examination is the gold standard for screening colorectal cancer. However, the current lack of histopathological image datasets of colorectal cancer, especially enteroscope biopsies, hinders the accurate evaluation of computer-aided diagnosis techniques. Therefore, a multi-category colorectal cancer dataset is needed to test various medical image classification methods to find high classification accuracy and strong robustness.A new publicly available Enteroscope Biopsy Histopathological H&E Image Dataset (EBHI) is published in this paper. To demonstrate the effectiveness of the EBHI dataset, we have utilized several machine learning, convolutional neural networks and novel transformer-based classifiers for experimentation and evaluation, using an image with a magnification of 200×.Experimental results show that the deep learning method performs well on the EBHI dataset. Classical machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%.To the best of our knowledge, EBHI is the first publicly available colorectal histopathology enteroscope biopsy dataset with four magnifications and five types of images of tumor differentiation stages, totaling 5532 images. We believe that EBHI could attract researchers to explore new classification algorithms for the automated diagnosis of colorectal cancer, which could help physicians and patients in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腼腆的冷玉完成签到,获得积分10
1秒前
SYLH应助念姬采纳,获得10
2秒前
2秒前
lotus发布了新的文献求助30
2秒前
3秒前
4秒前
丘比特应助kaka采纳,获得10
5秒前
6秒前
6秒前
星辰大海应助缓慢念云采纳,获得10
7秒前
研友_VZG7GZ应助sugar采纳,获得30
7秒前
7秒前
泥娃娃发布了新的文献求助10
7秒前
鲤鱼向珊发布了新的文献求助10
9秒前
Rondab应助虚幻赛凤采纳,获得30
10秒前
Miaa完成签到,获得积分10
10秒前
nuomi发布了新的文献求助10
11秒前
xu完成签到,获得积分10
11秒前
qwer发布了新的文献求助10
11秒前
mnlxx14发布了新的文献求助10
12秒前
17完成签到,获得积分10
12秒前
13秒前
sss发布了新的文献求助10
18秒前
柠安完成签到,获得积分10
19秒前
夏目发布了新的文献求助10
19秒前
精灵发布了新的文献求助10
21秒前
李爱国应助苯基乙胺采纳,获得10
23秒前
CipherSage应助故意的怜晴采纳,获得10
24秒前
烟花应助灼灼朗朗采纳,获得10
25秒前
英俊的铭应助无舟采纳,获得10
26秒前
26秒前
虚幻赛凤完成签到,获得积分10
27秒前
27秒前
有为发布了新的文献求助10
28秒前
David完成签到,获得积分10
28秒前
30秒前
光亮笑柳完成签到,获得积分10
30秒前
juwish完成签到,获得积分10
30秒前
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512158
关于积分的说明 11162133
捐赠科研通 3247021
什么是DOI,文献DOI怎么找? 1793676
邀请新用户注册赠送积分活动 874532
科研通“疑难数据库(出版商)”最低求助积分说明 804421