亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparative assessment of common pre-trained CNNs for vision-based surface defect detection of machined components

卷积神经网络 混淆矩阵 人工智能 计算机科学 混乱 模式识别(心理学) 人工神经网络 图像(数学) 吞吐量 机器视觉 机器学习 精神分析 心理学 电信 无线
作者
Swarit Anand Singh,Aitha Sudheer Kumar,K. A. Desai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:218: 119623-119623 被引量:50
标识
DOI:10.1016/j.eswa.2023.119623
摘要

Small and Medium Enterprises (SMEs) and Micro, Small, and Medium Enterprises (MSMEs) contemplate integrating machine vision with high throughput manufacturing lines to ensure a consistent quality of standardized components. The inspection productivity can improve considerably by substituting machine vision with manual activities. The pre-trained Convolutional Neural Networks (CNNs) can facilitate enhanced machine vision capabilities compared to the rule-based classical image processing algorithms. However, the non-availability of labeled datasets and lack of expertise in model development restricts their utilities for SMEs and MSMEs. The present work examines the practicality of utilizing publicly available labeled datasets while developing surface defect detection algorithms using pre-trained CNNs considering case studies of typical machined components - flat washers and tapered rollers. It is shown that the publicly available surface defect datasets are ineffective for specific-case such as machined surfaces of flat washers and tapered rollers. The explicitly labeled image datasets can offer better prediction abilities in such cases. A comparative assessment of common pre-trained CNNs is conducted to identify an appropriate network while developing a surface defect detection framework for machined components. The common pre-trained CNNs VGG-19, GoogLeNet, ResNet-50, EfficientNet-b0, and DenseNet-201 showing prediction abilities for similar classification tasks have been examined. The pre-trained CNNs developed using explicit image datasets were implemented to segregate defective flat washers and tapered rollers as sample components manufactured by SMEs and MSMEs. The performance assessment was accomplished using parameters estimated from the confusion matrix. It is observed that EfficientNet-b0 outperforms other networks on most parameters, and it can be preferred while developing a surface defect detection algorithm. The outcomes of the present study form the basis for developing an integrated vision-based expert system for surface defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助yuriy采纳,获得10
7秒前
9秒前
11秒前
sci2025opt完成签到 ,获得积分10
11秒前
lxz发布了新的文献求助10
12秒前
wuyyuan完成签到,获得积分10
13秒前
寒冷念文发布了新的文献求助10
13秒前
晓生发布了新的文献求助10
23秒前
莫愁完成签到 ,获得积分10
29秒前
852应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
37秒前
ding应助北国采纳,获得10
39秒前
54秒前
1分钟前
JC敬一完成签到,获得积分10
1分钟前
1分钟前
Dr大壮完成签到,获得积分10
1分钟前
KSDalton完成签到,获得积分10
1分钟前
忐忑的访彤完成签到,获得积分10
1分钟前
April_nd完成签到,获得积分10
1分钟前
2023完成签到,获得积分10
1分钟前
寒冷念文完成签到,获得积分10
1分钟前
Gy完成签到 ,获得积分10
1分钟前
汉堡包应助寒冷念文采纳,获得10
1分钟前
1分钟前
科研通AI6应助小艺采纳,获得10
1分钟前
1分钟前
充电宝应助吉他平方采纳,获得10
1分钟前
Unlisted完成签到,获得积分10
1分钟前
北国发布了新的文献求助10
2分钟前
xgnxgnxgn完成签到 ,获得积分10
2分钟前
科研通AI6应助北国采纳,获得10
2分钟前
Hcc完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Chen发布了新的文献求助10
2分钟前
追寻芷发布了新的文献求助20
2分钟前
Chen完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957925
求助须知:如何正确求助?哪些是违规求助? 4219124
关于积分的说明 13133042
捐赠科研通 4002208
什么是DOI,文献DOI怎么找? 2190234
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116613