Comparative assessment of common pre-trained CNNs for vision-based surface defect detection of machined components

卷积神经网络 混淆矩阵 人工智能 计算机科学 混乱 模式识别(心理学) 人工神经网络 图像(数学) 吞吐量 机器视觉 机器学习 精神分析 心理学 电信 无线
作者
Swarit Anand Singh,Aitha Sudheer Kumar,K. A. Desai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:218: 119623-119623 被引量:50
标识
DOI:10.1016/j.eswa.2023.119623
摘要

Small and Medium Enterprises (SMEs) and Micro, Small, and Medium Enterprises (MSMEs) contemplate integrating machine vision with high throughput manufacturing lines to ensure a consistent quality of standardized components. The inspection productivity can improve considerably by substituting machine vision with manual activities. The pre-trained Convolutional Neural Networks (CNNs) can facilitate enhanced machine vision capabilities compared to the rule-based classical image processing algorithms. However, the non-availability of labeled datasets and lack of expertise in model development restricts their utilities for SMEs and MSMEs. The present work examines the practicality of utilizing publicly available labeled datasets while developing surface defect detection algorithms using pre-trained CNNs considering case studies of typical machined components - flat washers and tapered rollers. It is shown that the publicly available surface defect datasets are ineffective for specific-case such as machined surfaces of flat washers and tapered rollers. The explicitly labeled image datasets can offer better prediction abilities in such cases. A comparative assessment of common pre-trained CNNs is conducted to identify an appropriate network while developing a surface defect detection framework for machined components. The common pre-trained CNNs VGG-19, GoogLeNet, ResNet-50, EfficientNet-b0, and DenseNet-201 showing prediction abilities for similar classification tasks have been examined. The pre-trained CNNs developed using explicit image datasets were implemented to segregate defective flat washers and tapered rollers as sample components manufactured by SMEs and MSMEs. The performance assessment was accomplished using parameters estimated from the confusion matrix. It is observed that EfficientNet-b0 outperforms other networks on most parameters, and it can be preferred while developing a surface defect detection algorithm. The outcomes of the present study form the basis for developing an integrated vision-based expert system for surface defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助sjr123采纳,获得10
1秒前
phoenix发布了新的文献求助10
2秒前
来来发布了新的文献求助10
2秒前
魏伯安完成签到,获得积分10
3秒前
淡定落雁完成签到,获得积分10
3秒前
YJ888发布了新的文献求助10
3秒前
研友_VZG7GZ应助zhangfuchao采纳,获得10
4秒前
Brian发布了新的文献求助10
5秒前
orixero应助chase采纳,获得10
6秒前
123完成签到,获得积分10
6秒前
艾斯完成签到 ,获得积分10
6秒前
8秒前
天天快乐应助陈曦采纳,获得10
8秒前
在水一方应助MEDwhy采纳,获得10
9秒前
科研通AI5应助YJ888采纳,获得10
12秒前
农夫完成签到,获得积分0
12秒前
12秒前
14秒前
wonder123发布了新的文献求助10
19秒前
20秒前
21秒前
Lyn发布了新的文献求助10
22秒前
柴胡完成签到,获得积分10
22秒前
大个应助wonder123采纳,获得10
23秒前
FashionBoy应助lan采纳,获得10
24秒前
善学以致用应助doiwanado采纳,获得10
25秒前
26秒前
26秒前
眼睛大如天完成签到,获得积分10
27秒前
slx发布了新的文献求助100
28秒前
风趣依瑶发布了新的文献求助10
29秒前
PAN完成签到,获得积分20
29秒前
haha发布了新的文献求助10
29秒前
29秒前
科研民工_郭完成签到,获得积分10
31秒前
吕子尚发布了新的文献求助10
32秒前
淡定落雁发布了新的文献求助10
32秒前
cis2014发布了新的文献求助10
32秒前
Mxj0607发布了新的文献求助10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176