Comparative assessment of common pre-trained CNNs for vision-based surface defect detection of machined components

卷积神经网络 混淆矩阵 人工智能 计算机科学 混乱 模式识别(心理学) 人工神经网络 图像(数学) 吞吐量 机器视觉 机器学习 心理学 电信 精神分析 无线
作者
Swarit Anand Singh,Aitha Sudheer Kumar,K. A. Desai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:218: 119623-119623 被引量:42
标识
DOI:10.1016/j.eswa.2023.119623
摘要

Small and Medium Enterprises (SMEs) and Micro, Small, and Medium Enterprises (MSMEs) contemplate integrating machine vision with high throughput manufacturing lines to ensure a consistent quality of standardized components. The inspection productivity can improve considerably by substituting machine vision with manual activities. The pre-trained Convolutional Neural Networks (CNNs) can facilitate enhanced machine vision capabilities compared to the rule-based classical image processing algorithms. However, the non-availability of labeled datasets and lack of expertise in model development restricts their utilities for SMEs and MSMEs. The present work examines the practicality of utilizing publicly available labeled datasets while developing surface defect detection algorithms using pre-trained CNNs considering case studies of typical machined components - flat washers and tapered rollers. It is shown that the publicly available surface defect datasets are ineffective for specific-case such as machined surfaces of flat washers and tapered rollers. The explicitly labeled image datasets can offer better prediction abilities in such cases. A comparative assessment of common pre-trained CNNs is conducted to identify an appropriate network while developing a surface defect detection framework for machined components. The common pre-trained CNNs VGG-19, GoogLeNet, ResNet-50, EfficientNet-b0, and DenseNet-201 showing prediction abilities for similar classification tasks have been examined. The pre-trained CNNs developed using explicit image datasets were implemented to segregate defective flat washers and tapered rollers as sample components manufactured by SMEs and MSMEs. The performance assessment was accomplished using parameters estimated from the confusion matrix. It is observed that EfficientNet-b0 outperforms other networks on most parameters, and it can be preferred while developing a surface defect detection algorithm. The outcomes of the present study form the basis for developing an integrated vision-based expert system for surface defect detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小胡完成签到,获得积分20
2秒前
拼搏的秋玲完成签到,获得积分10
4秒前
freshman3005发布了新的文献求助30
4秒前
pyyduck发布了新的文献求助10
4秒前
李爱国应助小白鼠采纳,获得10
6秒前
6秒前
kali完成签到 ,获得积分10
8秒前
文子完成签到 ,获得积分10
9秒前
dncjd发布了新的文献求助30
11秒前
15秒前
16秒前
16秒前
完美的妙芹完成签到,获得积分10
18秒前
wms完成签到,获得积分10
18秒前
张雨露完成签到 ,获得积分10
19秒前
zhou国兵发布了新的文献求助10
20秒前
刘某人完成签到 ,获得积分10
20秒前
FGTony发布了新的文献求助10
21秒前
老迟到的念文完成签到,获得积分10
25秒前
25秒前
25秒前
dxxx007完成签到,获得积分10
25秒前
FGTony完成签到,获得积分10
26秒前
28秒前
188的浩完成签到 ,获得积分10
29秒前
傲娇书萱发布了新的文献求助10
30秒前
顾矜应助天选之子采纳,获得10
30秒前
不配.应助Moonflower采纳,获得20
30秒前
30秒前
橘子味汽水完成签到,获得积分10
31秒前
i说晚安完成签到,获得积分10
32秒前
酷波er应助科研通管家采纳,获得10
34秒前
CipherSage应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
桐桐应助科研通管家采纳,获得10
34秒前
情怀应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
搜集达人应助科研通管家采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825