NMDA受体
生物
谷氨酸的
突触可塑性
神经科学
淀粉样前体蛋白
长时程增强
海马体
细胞生物学
受体
谷氨酸受体
阿尔茨海默病
生物化学
内科学
医学
疾病
作者
Joana Rajão‐Saraiva,Jade Dunot,Aurore Ribera,Mariana Temido‐Ferreira,Joana Coelho,Svenja König,Sébastien Moreno,Francisco J. Enguita,Michael Willem,Stefan Kins,Hélène Marie,Luı́sa V. Lopes,Paula A. Pousinha
出处
期刊:Aging Cell
[Wiley]
日期:2023-01-26
卷期号:22 (3)
被引量:5
摘要
N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.
科研通智能强力驱动
Strongly Powered by AbleSci AI