亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Emotion recognition research of eye-movement feature extraction classification network in online video learning environment

计算机科学 特征提取 人工智能 情绪识别 眼球运动 特征(语言学) 模式识别(心理学) 运动(音乐) 语音识别 哲学 语言学 美学
作者
Shengxi Liu,Ze Li,Xiaomei Tao
标识
DOI:10.1117/12.2667404
摘要

With the rapid development of artificial intelligence technology, emotion recognition has been applied in all aspects of life, using eye movement tracking technology for emotion recognition has become an important branch of emotion computing. In order to explore the relationship between eye movement signals and learners' emotional states in the online video learning environment, we used machine learning and convolutional neural network methods to recognize eye movement signals, and classify learners' emotional states into two categories, positive and negative. The study of eye movement data under different time windows mainly includes four stages: data collection, data preprocessing, classifier modeling, training and testing. In this paper, a Eye-movement Feature Extraction Classification Network(EFECN) based on convolutional neural network is proposed for small sample data and the classification of emotion state based on eye movement. The eye movement data were transformed into images through cross-modal conversion as input of multiple different deep convolutional neural networks, and the emotional states were classified in positive and negative directions. The accuracy was used as the evaluation index to evaluate and compare the different models. The accuracy of the eye movement emotion recognition model reached 72% in the SVM model and 91.62% in the EFECN model. Experimental results show that the convolutional neural network based on deep learning has a significant improvement in recognition accuracy compared with traditional machine learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅逊完成签到,获得积分10
3秒前
kk_1315完成签到,获得积分0
4秒前
wongcong发布了新的文献求助10
5秒前
布鲁爱思完成签到,获得积分10
6秒前
孤芳自赏IrisKing完成签到 ,获得积分10
8秒前
13秒前
SciGPT应助wongcong采纳,获得10
15秒前
吟风听且gnis完成签到,获得积分10
23秒前
Orange应助Jammie采纳,获得10
24秒前
pterionGao完成签到 ,获得积分10
28秒前
老金金完成签到 ,获得积分10
34秒前
35秒前
40秒前
43秒前
44秒前
48秒前
dgsunlan发布了新的文献求助10
48秒前
Leslie完成签到,获得积分10
48秒前
Leslie应助苏苏弋采纳,获得10
49秒前
50秒前
fish发布了新的文献求助10
53秒前
54秒前
55秒前
KaK发布了新的文献求助30
56秒前
57秒前
科研通AI5应助Lewis采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
SZQ发布了新的文献求助10
1分钟前
ShibaoWu发布了新的文献求助30
1分钟前
自信大白菜真实的钥匙完成签到,获得积分20
1分钟前
1分钟前
科研通AI2S应助SZQ采纳,获得10
1分钟前
1分钟前
1分钟前
Jasper应助珍德是泥鸭采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590619
求助须知:如何正确求助?哪些是违规求助? 3158987
关于积分的说明 9521880
捐赠科研通 2861917
什么是DOI,文献DOI怎么找? 1572870
邀请新用户注册赠送积分活动 738262
科研通“疑难数据库(出版商)”最低求助积分说明 722722