Machine Learning Techniques for Detecting Phishing URL Attacks

网络钓鱼 计算机科学 计算机安全 社会工程(安全) 机器学习 朴素贝叶斯分类器 人工智能 万维网 支持向量机 互联网
作者
Diana T. Mosa,Mahmoud Y. Shams,Amr A. Abohany,El-Sayed M. El-kenawy,M. Thabet
出处
期刊:Computers, materials & continua 卷期号:75 (1): 1271-1290
标识
DOI:10.32604/cmc.2023.036422
摘要

Cyber Attacks are critical and destructive to all industry sectors. They affect social engineering by allowing unapproved access to a Personal Computer (PC) that breaks the corrupted system and threatens humans. The defense of security requires understanding the nature of Cyber Attacks, so prevention becomes easy and accurate by acquiring sufficient knowledge about various features of Cyber Attacks. Cyber-Security proposes appropriate actions that can handle and block attacks. A phishing attack is one of the cybercrimes in which users follow a link to illegal websites that will persuade them to divulge their private information. One of the online security challenges is the enormous number of daily transactions done via phishing sites. As Cyber-Security have a priority for all organizations, Cyber-Security risks are considered part of an organization’s risk management process. This paper presents a survey of different modern machine-learning approaches that handle phishing problems and detect with high-quality accuracy different phishing attacks. A dataset consisting of more than 11000 websites from the Kaggle dataset was utilized and studying the effect of 30 website features and the resulting class label indicating whether or not it is a phishing website (1 or −1). Furthermore, we determined the confusion matrices of Machine Learning models: Neural Networks (NN), Naïve Bayes, and Adaboost, and the results indicated that the accuracies achieved were 90.23%, 92.97%, and 95.43%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花发布了新的文献求助10
刚刚
雪山飞龙发布了新的文献求助30
刚刚
Gstar完成签到,获得积分10
1秒前
1秒前
小李不爱搞科研完成签到,获得积分10
3秒前
美好斓发布了新的文献求助10
3秒前
3秒前
明天完成签到,获得积分10
4秒前
4秒前
4秒前
ryx发布了新的文献求助10
4秒前
大模型应助啦啦啦采纳,获得10
5秒前
5秒前
mmyhn发布了新的文献求助10
5秒前
天亮了完成签到 ,获得积分10
6秒前
6秒前
6秒前
田様应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
打打应助笑柳采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
魔法以琳发布了新的文献求助50
7秒前
7秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
bkagyin应助心灵美的犀牛采纳,获得10
8秒前
9秒前
美琦完成签到,获得积分10
9秒前
辛涩发布了新的文献求助10
9秒前
冷酷达发布了新的文献求助10
10秒前
10秒前
小蘑菇应助半芹采纳,获得10
10秒前
PDY发布了新的文献求助30
11秒前
11秒前
11秒前
小中发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119025
求助须知:如何正确求助?哪些是违规求助? 2769335
关于积分的说明 7700759
捐赠科研通 2424765
什么是DOI,文献DOI怎么找? 1287886
科研通“疑难数据库(出版商)”最低求助积分说明 620698
版权声明 599962