Point defect properties in high entropy MAX phases from first-principles calculations

材料科学 晶体缺陷 空位缺陷 组态熵 热力学 高熵合金 最大相位 结晶学 陶瓷 微观结构 冶金 物理 化学
作者
Hao Xiao,Shuang Zhao,Qingyuan Liu,Yuxin Li,Shijun Zhao,Fengping Luo,Yugang Wang,Qing Huang,Chenxu Wang
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:248: 118783-118783 被引量:13
标识
DOI:10.1016/j.actamat.2023.118783
摘要

MAX phase materials exhibit both metal and ceramic properties due to their unique laminated atomic structures, making them promising candidates in advanced nuclear energy systems. Recently, high entropy MAX (HE-MAX) phases have been developed and attracted much attention due to their unique properties. However, the role of chemical disorder in HE-MAX phases in their point defects properties is still not clear. In this work, we investigated the point defect properties in (TiVNb)2SnC, (TiZrHf)2SnC, (TiVNbZrHf)2SnC, and five corresponding single-component M2SnC phases (M=Ti, V, Nb, Zr, Hf) using first-principles calculations. The average vacancy (VM, VSn, VC) formation energies in the HE-MAX phases are (TiZrHf)2SnC > (TiVNbZrHf)2SnC > (TiVNb)2SnC. With the addition of Zr and Hf atoms, the charge transfer between atoms in the HE-MAX phase increases, hindering the formation of these vacancies. Meanwhile, the obtained migration energies show that the migration barrier of VM through Ti is lower than that of V, Nb, Zr, or Hf, while Zr and Hf atoms increase the VC migration barrier due to their large atomic sizes. Additionally, the formation energies of antisite defects in all three HE-MAX phases are lower than the single-component M2SnC phases, indicating that the HE-MAX phases are more resistant to radiation-induced amorphization. This work provides a fundamental understanding of the effect of chemical disorder on point defect properties in MAX phases and proposes a new strategy for designing novel HE-MAX phases with better performance in nuclear applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泥嚎发布了新的文献求助10
1秒前
1秒前
1秒前
Shale完成签到,获得积分10
2秒前
4秒前
糖糖发布了新的文献求助10
4秒前
小七2022发布了新的文献求助30
5秒前
6秒前
liang发布了新的文献求助30
7秒前
7秒前
大头粽发布了新的文献求助30
8秒前
Lee发布了新的文献求助10
9秒前
zoujinru发布了新的文献求助10
9秒前
李行锋完成签到,获得积分10
10秒前
10秒前
10秒前
喜看财经完成签到,获得积分10
11秒前
lss发布了新的文献求助10
11秒前
泥嚎完成签到,获得积分10
12秒前
科研通AI5应助liang采纳,获得10
13秒前
13秒前
cdercder应助喜看财经采纳,获得10
15秒前
jaywzz发布了新的文献求助10
16秒前
可爱的函函应助666采纳,获得10
16秒前
泽1发布了新的文献求助10
17秒前
17秒前
Poisomber关注了科研通微信公众号
18秒前
liang完成签到,获得积分10
18秒前
ZH完成签到,获得积分10
19秒前
之间完成签到,获得积分10
20秒前
共勉完成签到,获得积分10
21秒前
zhang完成签到,获得积分10
21秒前
所所应助huahua采纳,获得30
22秒前
华仔应助huahua采纳,获得10
22秒前
科目三应助huahua采纳,获得10
22秒前
共享精神应助huahua采纳,获得10
22秒前
甜甜的大米完成签到,获得积分10
22秒前
虚拟的耷完成签到,获得积分10
23秒前
24秒前
今后应助木木采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734713
求助须知:如何正确求助?哪些是违规求助? 3278694
关于积分的说明 10010586
捐赠科研通 2995337
什么是DOI,文献DOI怎么找? 1643307
邀请新用户注册赠送积分活动 781114
科研通“疑难数据库(出版商)”最低求助积分说明 749249