Hybrid Genetic Optimisation for Quantum Feature Map Design

特征(语言学) 核(代数) 计算机科学 特征向量 模式识别(心理学) 遗传算法 人工智能 支持向量机 k-最近邻算法 核方法 算法 数学 机器学习 哲学 语言学 组合数学
作者
Rowan Pellow-Jarman,Anban Pillay,Ilya Sinayskiy,Francesco Petruccione
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.02980
摘要

Kernel methods are an important class of techniques in machine learning. To be effective, good feature maps are crucial for mapping non-linearly separable input data into a higher dimensional (feature) space, thus allowing the data to be linearly separable in feature space. Previous work has shown that quantum feature map design can be automated for a given dataset using NSGA-II, a genetic algorithm, while both minimizing circuit size and maximizing classification accuracy. However, the evaluation of the accuracy achieved by a candidate feature map is costly. In this work, we demonstrate the suitability of kernel-target alignment as a substitute for accuracy in genetic algorithm-based quantum feature map design. Kernel-target alignment is faster to evaluate than accuracy and doesn't require some data points to be reserved for its evaluation. To further accelerate the evaluation of genetic fitness, we provide a method to approximate kernel-target alignment. To improve kernel-target alignment and root mean squared error, the final trainable parameters of the generated circuits are further trained using COBYLA to determine whether a hybrid approach applying conventional circuit parameter training can easily complement the genetic structure optimization approach. A total of eight new approaches are compared to the original across nine varied binary classification problems from the UCI machine learning repository, showing that kernel-target alignment and its approximation produce feature map circuits enabling comparable accuracy to the previous work but with larger margins on training data (in excess of 20\% larger) that improve further with circuit parameter training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lllll发布了新的文献求助10
刚刚
刚刚
傲骨发布了新的文献求助10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
tuanheqi应助科研通管家采纳,获得150
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Jenny应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
威武雅容发布了新的文献求助10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
顺心香露发布了新的文献求助10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
1秒前
多啦a萌发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
Mario发布了新的文献求助10
1秒前
ucas应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
ucas应助科研通管家采纳,获得10
2秒前
Jenny应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
wy.he应助科研通管家采纳,获得10
2秒前
公龟应助科研通管家采纳,获得10
2秒前
ucas应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441