Artificial Neural Network Reveals the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism

沼泽红假单胞菌 分解代谢 木质素 化学 产品(数学) 生物化学 植物 生物 新陈代谢 有机化学 细菌 遗传学 几何学 数学
作者
Niaz Bahar Chowdhury,Mark Kathol,Nabia Shahreen,Rajib Saha
标识
DOI:10.1101/2025.02.21.639544
摘要

Rhodopseudomonas palustris, a versatile bacterium with diverse biotechnological applications, can effectively breakdown lignin, a complex and abundant polymer in plant biomass. This study investigates the metabolic response of R. palustris when catabolizing various lignin breakdown products (LBPs), including the monolignols p coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, p coumarate, sodium ferulate, and kraft lignin. Transcriptomics and proteomics data were generated for those specific LBP breakdown conditions and used as features to train machine learning models, with growth rates as the target. Three models, namely Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machine (SV), were compared, with ANN achieving the highest predictive accuracy for both transcriptomics (94%) and proteomics (96%) datasets. Permutation feature importance analysis of the ANN models identified the top twenty genes and proteins influencing growth rates. Combining results from both transcriptomics and proteomics, eight key transport proteins were found to significantly influence the growth of R. palustris on LBPs. Re-training the ANN using only these eight transport proteins achieved predictive accuracies of 86% and 76% for proteomics and transcriptomics, respectively. This work highlights the potential of ANN-based models to predict growth-associated genes and proteins, shedding light on the metabolic behavior of R. palustris in lignin degradation under aerobic and anaerobic conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
机智的丹烟完成签到,获得积分10
1秒前
2秒前
秋寒云发布了新的文献求助10
3秒前
Cooby完成签到,获得积分10
3秒前
3秒前
nini发布了新的文献求助10
3秒前
vonfenson发布了新的文献求助10
4秒前
4秒前
研友_xLOlVn发布了新的文献求助20
4秒前
科研通AI5应助ff采纳,获得10
4秒前
6秒前
CodeCraft应助beizhi采纳,获得10
6秒前
6秒前
Panini发布了新的文献求助10
7秒前
秋霜应助十二月采纳,获得10
7秒前
萝卜发布了新的文献求助10
8秒前
xiaoyuan发布了新的文献求助10
9秒前
汉堡包应助nini采纳,获得10
10秒前
10秒前
老迟到的鬼神完成签到 ,获得积分10
10秒前
10秒前
KYT_Hu完成签到,获得积分10
10秒前
11秒前
科研通AI5应助Shaka采纳,获得10
11秒前
李奚发布了新的文献求助10
11秒前
星辰坠于海应助老朱采纳,获得10
11秒前
Lucas应助hahahahaha采纳,获得10
12秒前
12秒前
何方发布了新的文献求助10
13秒前
qaqa发布了新的文献求助10
14秒前
xiaoyuan完成签到,获得积分10
14秒前
15秒前
qin希望应助樊念烟采纳,获得30
15秒前
共享精神应助文献搬运工采纳,获得10
16秒前
16秒前
萝卜完成签到,获得积分10
16秒前
Lynn发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553714
求助须知:如何正确求助?哪些是违规求助? 3129536
关于积分的说明 9382934
捐赠科研通 2828669
什么是DOI,文献DOI怎么找? 1555104
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267