Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study

医学 队列 队列研究 内科学 肝内胆管癌 外科 胃肠病学
作者
Tingfeng Huang,Cong Luo,Luo-Bin Guo,Hongzhi Liu,Jiangtao Li,Qizhu Lin,Ruirui Fan,Weiping Zhou,Jingdong Li,Kecan Lin,Shi-Chuan Tang,Yongyi Zeng
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:31 (11)
标识
DOI:10.3748/wjg.v31.i11.100911
摘要

BACKGROUND To investigate the preoperative factors influencing textbook outcomes (TO) in Intrahepatic cholangiocarcinoma (ICC) patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO, we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations (SHAP) technique to illustrate the prediction process. AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction. METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China, covering the period from 2011 to 2017. Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO. Based on these variables, an EXtreme Gradient Boosting (XGBoost) machine learning prediction model was constructed using the XGBoost package. The SHAP (package: Shapviz) algorithm was employed to visualize each variable's contribution to the model's predictions. Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups. RESULTS Among 376 patients, 287 were included in the training group and 89 in the validation group. Logistic regression identified the following preoperative variables influencing TO: Child-Pugh classification, Eastern Cooperative Oncology Group (ECOG) score, hepatitis B, and tumor size. The XGBoost prediction model demonstrated high accuracy in internal validation (AUC = 0.8825) and external validation (AUC = 0.8346). Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1, 2, and 3 years were 64.2%, 56.8%, and 43.4%, respectively. CONCLUSION Child-Pugh classification, ECOG score, hepatitis B, and tumor size are preoperative predictors of TO. In both the training group and the validation group, the machine learning model had certain effectiveness in predicting TO before surgery. The SHAP algorithm provided intuitive visualization of the machine learning prediction process, enhancing its interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助刻苦的雁荷采纳,获得10
刚刚
1秒前
gzy780819发布了新的文献求助10
2秒前
英俊的铭应助同尘采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
fly发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
7秒前
桐桐应助田...采纳,获得10
9秒前
suliang完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
纯情的白开水完成签到 ,获得积分10
12秒前
FireNow完成签到 ,获得积分10
14秒前
机会啊发布了新的文献求助10
15秒前
Qu_Yun完成签到,获得积分10
15秒前
思源应助闪闪的方盒采纳,获得10
16秒前
范yx完成签到 ,获得积分10
16秒前
mario发布了新的文献求助10
17秒前
荔枝鱼完成签到,获得积分10
17秒前
搞怪的钥匙发布了新的文献求助270
17秒前
17秒前
17秒前
煜清清完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
ACTWILD完成签到,获得积分20
21秒前
21秒前
21秒前
hu发布了新的文献求助10
23秒前
星辰大海应助小鹿采纳,获得10
23秒前
苏silence发布了新的文献求助10
24秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667692
求助须知:如何正确求助?哪些是违规求助? 3226209
关于积分的说明 9768461
捐赠科研通 2936216
什么是DOI,文献DOI怎么找? 1608183
邀请新用户注册赠送积分活动 759531
科研通“疑难数据库(出版商)”最低求助积分说明 735404