Increased dietary protein stimulates amino acid catabolism via the gut microbiota and secondary bile acid production
生物
分解代谢
胆汁酸
肠道菌群
氨基酸
生物化学
新陈代谢
微生物学
食品科学
作者
Sandra Tobón‐Cornejo,Mónica Sánchez‐Tapia,Rocío Guizar-Heredia,Luís Villegas,Lilia G. Noriega,Janette Furuzawa‐Carballeda,Rogelio Hernàndez‐Pando,Natalia Vázquez-Manjarrez,Omar Granados‐Portillo,Adriana M. López‐Barradas,Rosa Rebollar‐Vega,Otoniel Maya,Aaron W. Miller,Aurora Serralde,Martha Guevara-Cruz,Nimbe Torres,Armando R. Tovar
Excess amino acids from a protein-rich diet are mainly catabolized in the liver. However, it is still unclear to what extent the gut microbiota may be involved in the mechanisms governing this catabolism. Therefore, the aim of this study was to investigate whether consumption of different dietary protein concentrations induces changes in the taxonomy of the gut microbiota, which may contribute to the regulation of hepatic amino acid catabolism. Consumption of a high-protein diet caused overexpression of HIF-1α in the colon and increase in mitochondrial activity, creating a more anaerobic environment that was associated with changes in the taxonomy of the gut microbiota promoting an increase in the synthesis of secondary bile acids, increased secretion of pancreatic glucagon. This effect was demonstrated in pancreatic islets, where secondary bile acids stimulated the expression of the PC2 enzyme that promotes glucagon formation. The increase in circulating glucagon was associated with an induction of the expression of hepatic amino acid-degrading enzymes, an effect attenuated by antibiotics. Thus, high protein intake in mice and humans induced the increase of different species in the gut microbiota with the capacity to produce secondary bile acids leading to an increase in secondary bile acids and glucagon levels, promoting amino acid catabolism.