RT‐Unet: An advanced network based on residual network and transformer for medical image segmentation

残余物 计算机科学 分割 人工智能 图像分割 变压器 模式识别(心理学) 计算机视觉 数据挖掘 算法 电压 物理 量子力学
作者
Bo Li,Sikai Liu,Fei Wu,Guanghui Li,Meiling Zhong,Xiao‐Hui Guan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (11): 8565-8582 被引量:16
标识
DOI:10.1002/int.22956
摘要

For the past several years, semantic segmentation method based on deep learning, especially Unet, have achieved tremendous success in medical image processing. The U-shaped topology of Unet can well solve image segmentation tasks. However, due to the limitation of traditional convolution operations, Unet cannot realize global semantic information interaction. To address this problem, this paper proposes RT-Unet, which combines the advantages of Transformer and Residual network for accurate medical segmentation. In RT-Unet, the Residual block is taken as the image feature extraction layer to alleviate the problem of gradient degradation and obtain more effective features. Meanwhile, Skip-Transformer is proposed, which takes Multi-head Self-Attention as the main algorithm framework, instead of the original Skip-Connection layer in Unet to avoid the influence of shallow features on the network's performance. Besides, we add attention module at the decoder to reduce semantic differences. According to the experiments on MoNuSeg data set and ISBI_2018cell data set, RT-Unet achieves better segmentation performance than other deep learning-based algorithms. In addition, a series of further ablation experiments were conducted on Residual network and Skip-Transformer, which verified the effectiveness and efficiency of the proposed methods in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一724发布了新的文献求助10
刚刚
刚刚
1秒前
木易心应助橘子星采纳,获得10
2秒前
2秒前
2秒前
小丁完成签到,获得积分10
2秒前
3秒前
慕燕琼完成签到,获得积分10
3秒前
3秒前
殷青完成签到,获得积分10
3秒前
lvlulu发布了新的文献求助10
3秒前
4秒前
river123完成签到,获得积分10
4秒前
小底完成签到,获得积分10
5秒前
5秒前
Hou发布了新的文献求助10
5秒前
6秒前
6秒前
英俊的铭应助尔尔采纳,获得10
6秒前
慧慧发布了新的文献求助10
6秒前
泡芙不甜完成签到 ,获得积分10
7秒前
freedom发布了新的文献求助10
7秒前
危机的酒窝完成签到,获得积分10
7秒前
Ava应助Xxaaa采纳,获得10
8秒前
可靠元蝶发布了新的文献求助10
8秒前
9秒前
大海发布了新的文献求助10
9秒前
10秒前
yy完成签到 ,获得积分10
11秒前
萝卜炖土豆完成签到,获得积分10
11秒前
11秒前
12秒前
祈愿发布了新的文献求助10
12秒前
12秒前
13秒前
阿湫发布了新的文献求助10
13秒前
哈哈发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3209570
求助须知:如何正确求助?哪些是违规求助? 2858950
关于积分的说明 8117420
捐赠科研通 2524564
什么是DOI,文献DOI怎么找? 1358064
科研通“疑难数据库(出版商)”最低求助积分说明 642755
邀请新用户注册赠送积分活动 614360