RT‐Unet: An advanced network based on residual network and transformer for medical image segmentation

残余物 计算机科学 分割 人工智能 图像分割 变压器 模式识别(心理学) 计算机视觉 数据挖掘 算法 量子力学 物理 电压
作者
Bo Li,Sikai Liu,Fei Wu,Guanghui Li,Meiling Zhong,Xiao‐Hui Guan
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (11): 8565-8582 被引量:16
标识
DOI:10.1002/int.22956
摘要

For the past several years, semantic segmentation method based on deep learning, especially Unet, have achieved tremendous success in medical image processing. The U-shaped topology of Unet can well solve image segmentation tasks. However, due to the limitation of traditional convolution operations, Unet cannot realize global semantic information interaction. To address this problem, this paper proposes RT-Unet, which combines the advantages of Transformer and Residual network for accurate medical segmentation. In RT-Unet, the Residual block is taken as the image feature extraction layer to alleviate the problem of gradient degradation and obtain more effective features. Meanwhile, Skip-Transformer is proposed, which takes Multi-head Self-Attention as the main algorithm framework, instead of the original Skip-Connection layer in Unet to avoid the influence of shallow features on the network's performance. Besides, we add attention module at the decoder to reduce semantic differences. According to the experiments on MoNuSeg data set and ISBI_2018cell data set, RT-Unet achieves better segmentation performance than other deep learning-based algorithms. In addition, a series of further ablation experiments were conducted on Residual network and Skip-Transformer, which verified the effectiveness and efficiency of the proposed methods in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
华仔应助zhong采纳,获得10
刚刚
牛拉犁完成签到 ,获得积分10
1秒前
趙途嘵生发布了新的文献求助10
1秒前
fancynancy应助onikiri采纳,获得20
2秒前
量子星尘发布了新的文献求助30
2秒前
2秒前
无聊的凉面完成签到,获得积分10
2秒前
3秒前
啊嘞嘞完成签到,获得积分20
3秒前
时光里完成签到,获得积分10
3秒前
catherine完成签到,获得积分10
3秒前
上官若男应助耍酷的莫言采纳,获得10
4秒前
5秒前
单纯一笑发布了新的文献求助10
5秒前
5秒前
犹豫战斗机完成签到,获得积分10
6秒前
NexusExplorer应助飞快的以冬采纳,获得10
6秒前
张才豪完成签到,获得积分10
6秒前
李爱国应助邵洋采纳,获得10
7秒前
8秒前
8秒前
无花果应助壮观的文龙采纳,获得10
8秒前
pl656发布了新的文献求助10
9秒前
jiaa完成签到,获得积分10
9秒前
Nagisa发布了新的文献求助30
9秒前
9秒前
9秒前
Yang发布了新的文献求助10
10秒前
共享精神应助啊嘞嘞采纳,获得10
10秒前
清爽的凤妖完成签到,获得积分10
11秒前
Jameszhuo完成签到,获得积分10
11秒前
11秒前
FashionBoy应助方仔采纳,获得10
11秒前
ljh123456完成签到,获得积分20
12秒前
12秒前
13秒前
单纯一笑完成签到,获得积分10
13秒前
ZR14124发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149